

JavaOne 2011

JavaFX

Datasources:
Getting Real-World

Data into JavaFX

Controls

Johan Vos - LodgON

Jonathan Giles - Oracle

JavaOne 2011

Disclaimer
Disclaimer #1:

This is not an Oracle talk – this is a talk by Johan and Jonathan on a project
that we do in our own time. This may or may not have any relationship to
future Oracle products.

Disclaimer #2:

THE FOLLOWING IS INTENDED TO OUTLINE OUR GENERAL PRODUCT
DIRECTION. IT IS INTENDED FOR INFORMATION PURPOSES ONLY, AND MAY
NOT BE INCORPORATED INTO ANY CONTRACT. IT IS NOT A COMMITMENT TO
DELIVER ANY MATERIAL, CODE, OR FUNCTIONALITY, AND SHOULD NOT BE
RELIED UPON IN MAKING PURCHASING DECISION. THE DEVELOPMENT,
RELEASE, AND TIMING OF ANY FEATURES OR FUNCTIONALITY DESCRIBED FOR
ORACLE'S PRODUCTS REMAINS AT THE SOLE DISCRETION OF ORACLE.

JavaOne 2011

The Problem

Manager: “Bob, our users are complaining we aren‟t showing them

enough information”

Bob: *internalises anguished scream, already knowing what the next

sentence is going to be*

Manager: “We need you to add a table into our app that shows all the
information that is missing”

Bob: *facepalm*

JavaOne 2011

Problem Statement

 Getting data into a Table can often be difficult:

 Bringing data into memory

 Massaging data

 Loading data into table efficiently (maybe on-demand)

 Displaying the data can be tricky

 Allowing editing of data (with proper bindings to the data source) can

be complex

 Hint: We think we have some code in this talk that may help…

JavaOne 2011

Outline

 Intro to JavaFX 2.0 TableView / ListView controls

 Retrieving/parsing/rendering data

 Mapping data with controls

 Static and dynamic data

 Cell factories

 „EnergyCo‟ Example

JavaOne 2011

JavaFX 2.0 Controls

 Primary focus of this talk: ListView and TableView

 Common API:

 Both have a generic type

 „items‟ ObservableList: the raw data.

 „cell factory‟ support: the renderer of the raw data

 JavaFX Controls leverage generics, e.g.

 ListView<T>

 TableView<T>

 TreeView<T>

 With <T> the type of the objects contained within the control.

JavaOne 2011

Creating a ListView Instance
// Get the data that we want to show in the ListView

ObservableList<Person> people = …

// Create a ListView control

ListView<Person> peopleList = new ListView<Person>();

// Set the data in the items list (or just pass in to the constructor)

peopleList.setItems(people);

JavaOne 2011

Creating a TableView Instance
// Get the data that we want to show in the TableView

ObservableList<Person> people = …

// Create a TableView control

ListView<Person> peopleList = new ListView<Person>();

// Set the data in the items list (or just pass in to the constructor)

peopleList.setItems(people);

// Create TableColumn instances for each column we want

TableColumn<Person, String> firstNameCol = new TableColumn<>(“First”);

// Tell the TableColumn how to extract the value from the row object

firstNameCol.setCellValueFactory(…);

JavaOne 2011

What Is A Cell Value Factory?

 Each TableColumn needs a Cell Value Factory

 Otherwise the column will be blank

 It tells the TableColumn how to extract a value for a cell from a
single item from the TableView.items list

 It is a Callback<CellDataFeatures<S,T>, ObservableValue<T>>

 S is the type of the TableView

 T is the type of the TableColumn

JavaOne 2011

Creating Cell Value Factories
Callback<CellDataFeatures<Person, String>, ObservableValue<String>> callback =

 new Callback<>() {

 public ObservableValue<String> call(CellDataFeatures<Person, String> p) {

 // Note: We are returning an ObservableValue, not the value itself!

 return p.getValue().lastNameProperty();

 }

 };

firstNameCol.setCellValueFactory(callback);

JavaOne 2011

Alternatively…
firstNameCol.setCellValueFactory(new PropertyValueFactory(“firstName”));

// PropertyValueFactory uses reflection to attempt to find either a

// firstNameProperty() method that returns the correct type, and if that

// fails, it will attempt to return getFirstName() / isFirstName().

// Of course, getFirstName() returns a String, not an

// ObservableValue<String>…

// So, we wrap using a ReadOnlyObjectWrapper

// You can do this too if your objects aren’t JavaFX classes

// The downside is that the UI won’t update dynamically

JavaOne 2011

Visualization of data

 Controls can visualize

 Different kinds of data (ListView<T>)

 From different sources (file, database, network)

 In different formats (XML,CSV,JSON)

 With different dynamic capabilities (static versus dynamic)

JavaOne 2011

Examples of datasources

 In-memory arrays:
String[][] people = new String[][] {

 {"Jonathan", "Giles", "jonathan.giles@oracle.com"},

 {"Johan", "Vos", "johan@lodgon.com"}

 };

CSV Data:

[show example of large file]

XML Resource:

[show online XML resource]

JavaOne 2011

Retrieving/parsing/rendering

 Retrieving, parsing and rendering data are three different

tasks.

 These tasks are domain-agnostic

 JavaFX Controls provide a way to render data

 JavaFX DataSources project provides a way to retrieve

and parse data by providing abstractions for a number of

sources and formats

JavaOne 2011

Retrieving and parsing

 Retrieving data:

 File, local/remote database, network resources

 Parsing data:

 XML, JSON, CSV, Java Objects

JavaOne 2011

Retrieving Data

 Retrieving data:

 File, local/remote database, network resources

 Javafx.datasource.io package contains a number of
different (fysical) sources.

 DataSource classes do not know what parts of the data
are needed

 a JDBC based resource contains many columns, but
only 2 of those should be rendered in a TableView

 An XML resource contains structured information, but
not all elements/attributes should be rendered

JavaOne 2011

Mapping Data with Controls

 Javafx.datasource.control package contains wrappers

that gather the application-specific relevant portions of the

data and provide those to the JavaFX Controls

 Column headers match the CSV headers

 Column headers can be mapped with XML elements or

attributes (Xpath)

 Column headers can be mapped with database column

names

 ...

JavaOne 2011

Static versus Dynamic

 Some data elements are static

 Some data elements are dynamic

 Update requested by control (pull)

 Update requested by datasource (push)

JavaOne 2011

RedFX

 Library that allows remote synchronization of data

 If the value of a data element changes on one client, or in a

backend component, the same element is updated on all other

clients

 Using Binding, the visualized data is updated immediately

JavaOne 2011

Examples

 Code + demo shown for

 ArrayDataSource

 CSVDataSource

 JDBCDataSource

 XmlFileDataSource

 XmlRESTDataSource

 JSONRESTDataSource

 RedFXDataSource

JavaOne 2011

Cell Factories

 Common API across ListView, TreeView, TableView

 Responsible for displaying a single row/cell in a control

 ListView: One cell per row

 TableView: One cell per row + one cell for each column

 Default cells call toString() on the cell.item object

 Custom cells can do anything…

JavaOne 2011

Creating a Cell Factory
// todo

todo

JavaOne 2011

Common Cell Factories

 Ranked in order of important (imho):

 Text editing

 Check box

 Drop-down menu

 Context-specific rendering (red for negative, green for positive)

 Images

 Progress bar

 Expand-on-click

 Everything else…

JavaOne 2011

Common Cell Factories

 Ranked in order of importance:

Text editing

Check box

Drop-down menu

Context-specific rendering (red for negative, green for positive)

Images

Progress bar

Expand-on-click

Everything else…

EnergyCo Demo

JavaOne 2011

JavaOne 2011

What‟s Next?

 Current implementation is read-only.

 Write support can be imagined simply as list write operations.

 Support for TreeView API

 Support for Charts API

 More data sources

 More cell factories

 More convenience

JavaOne 2011

Where Can I Get This?

 This is a free, open source project built on top of JavaFX 2.0

 It is not an Oracle-sponsored project

 BSD-ish license (we are not lawyers) – contact us if you‟re concerned

 It can be downloaded right now:

http://javafxdata.jonathangiles.net

http://javafxdata.jonathangiles.net/

Thanks

Johan Vos johan@lodgon.com

Jonathan Giles jonathan.giles@oracle.com

JavaOne 2011

mailto:johan@lodgon.com
mailto:jonathan.giles@oracle.com

