
The	JavaFX	Accessibility	API

Jonathan	Giles	
Principle	Member	of	Technical	Staff
Java	Client	Group
October,	2015

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Program	Agenda

Introduction	/	Overview

Fundamentals	of	Accessibility

Advanced	Accessibility	API

Making	Your	Code	Accessible

Summary

1

2

3

4

5

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

What	does	it	mean	to	be	Accessible?

Accessibility is	the	degree	to	which	a	product,	device,	service,	
or	environment	is	available	to	as	many	people	as	possible.	
Accessibility	can	be	viewed	as	the	"ability	to	access"	and	benefit	
from	some	system	or	entity.	(*)

(*)	http://en.wikipedia.org/wiki/Accessibility

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Accessible	Software
• Accessible	software	aims	to	address	:

– Visual	Impairments	(*)
– Auditory	Impairments	
–Motor/Mobility	Issues
– Seizures
– Cognitive/Intellectual	Impairments

• Assistive	technologies	are	often	built	into	the	operating	system
– Screen	readers	(*),	high	contrast	themes	(*),	zoom	capability	etc.

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Screen	Readers
• Speak	the	contents	of	a	control
• Provide	their	own	concept	of	focus	and	traversal

– Independent	(but	related	to)	normal	focus	and	traversal

• Interact	with	programs	using	platform	specific	keys
• Examples:

– VoiceOver,	from	Apple,	for	the	Mac
– Narrator,	from	Microsoft,	for	Windows
– JAWS,	from	Freedom	Scientific,	for	Windows

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Accessibility	and	JavaFX
• Accessibility	API	came	late	to	JavaFX

– Focus	of	the	team	was	on	implementing	the	controls
– There	was	a	lot	of	engineering	turn	over	on	the	team
– Prototypes	were	started	but	none	were	completed

• Windows	accessibility	API	was	incomplete	(until	UIA)
– Non-native	solutions	such	as	IA2	available	(augments	MSAA	API)
–Microsoft	UIA	only	became	available	with	Windows	7

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Why	is	Accessibility	hard	to	implement?
• Requires	a	common	portable	JavaFX API
• Must	support	many	different	kinds	of	controls

–Many	different	controls	causes	explosion	of	API	and	concepts

• Lots	of	different	platform	specific	native	code
– Lack	of	documentation	and	native	code	examples
– Need	to	determine	behavior	by	experimentation

• Implementation	cross	cuts	different	layers	in	the	JavaFX
– Implementers	needs	to	be	familiar	with	Glass,	Controls,	Skins	…

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Other	Accessibility	Implementations
• AWT/Swing

– Relies	on	access	bridge	shared	library	and	vendor	support
– Incomplete,	considered	by	some	to	be	buggy

• Eclipse	SWT
– Uses	native	controls	so	gets	native	accessibility	“for	free”
– Uses	IA2	on	Windows	(not	supported	by	Microsoft)
– Some	bugs	and	problems	in	the	API	and	implementation

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Design	Goals	for	Java	FX	Accessibility
• Provide	a	complete,	minimal	and	unobtrusive	API

– Support	native	behavior	and	platform	specific	mechanisms
– Use	existing	Java	FX	conventions	and	standards
– Ensure	the	implementation	has	a	low	overhead

• Implement	accessibility	for	all	built-in	FX	controls
– Prove	that	the	API	is	complete	and	full	featured

• Allow	developers	to	make	their	own	controls	accessible

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

JavaFX Accessibility:	A	Lightweight	Implementation
FX Nodes (API)

Stage

Scene

Group

Button

Labeled	Text

Role=	Scene

Role=Parent

Role=Button

Role=Text

1	to	1

Accessible Objects
(no state, non-API)

Mac
(NSAccessible)

Windows	
(UIA)

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Accessibility	Design	Goals:	Realised!
• JavaFX	scenegraph is	used	to	contain	accessibility	info

– Avoid	shadow	hierarchies	(decrease	complexity,	footprint)

• Use	FX	properties,	methods	and	subclassing
– Ensures	that	FX	Accessibility	is	CSS	and	FXML	friendly

• Low	overhead	implementation
– Run	code	and	create	objects	only	when	Screen	Reader	is	active
– No	Screen	Reader	==	No	Accessible	Code	Executed
– Screen	Reader	– No	data	duplication	as	accessibility	data	is	represented	by	scenegraph

Copyright	©	2014, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Fundamentals	of	Accessibility
The	JavaFX Accessibility	API

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Fundamental	Accessibility	API
A	simple	set	of	properties	to	solve	the	most	common	cases

• Node#accessibleRoleProperty()
• Node#accessibleRoleDescriptionProperty()
• Node#accessibleTextProperty()
• Node#accessibleHelpProperty()
• Label#labelForProperty() (not	a	new	property)

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Accessible	Role	Property
• AccessibleRole is	an	enumeration	property	on	Node
• The	Role	tells	the	Screen	Reader	the	“kind	of	control”

– Screen	reader	normally	speaks	the	role	(ie.	says	“Button”)
– A	Node	can	have	at	most	one	accessible	role

• Some	values	the	role	might	have:
– AccessibleRole.HYPERLINK (used	by	javafx.scene.control.Hyperlink)
– AccessibleRole.TABLE_VIEW (used	by	javafx.scene.control.TableView)

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Setting	the	Role	(Once,	During	Creation)
public Button(String text, Node graphic) {

super(text, graphic);
initialize();

}
private void initialize() {

getStyleClass().setAll(DEFAULT_STYLE_CLASS);
setAccessibleRole(AccessibleRole.BUTTON);

}

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

When	should	I	set	the	role	of	a	Node?
• The	role	always	set	appropriately	for	built-in	controls
• The	default	role	is	AccessibleRole.NODE (or	PARENT)

– Currently	both	of	these	roles	are	ignored	by	the	screen	reader	(nothing	spoken)

• Set	the	role	for	Nodes	that	are	not	a	Control
– Choose	the	closest	matching	role		from	the	set	of	enums
– Very	often	AccessibleRole.BUTTON is	a	good	choice

“But	my	control	is	not	a	button,	it’s	a	bouncing	ball!”

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Accessible	Role	Description	Property
• Role	Description	is	a	string	property	on	Node
• The	property	value	is	always	null	for	built-in	Controls

–When	null,	the	Screen	Reader	speaks	native	description

• Together,	role	and	role	description	allow	customisation
– There	are	no	user	defined	roles	(AccessibleRole is	an	enum),	but	the	role	
description	allows	the	Screen	Reader	to	say	“Ball”	instead	of	“Button”

“What	about	speaking	the	contents	of	my	control?”

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Accessible	Text	Property
• Accessible	Text	is	a	Node	Property,	type	is	String	(default	is	null)
• Tells	the	Screen	Reader	how	to	speak	the	contents	of	a	control
• Always	null	by	default	for	built-in	Controls

– Controls	speak	the	appropriate	contents	for	the	control
– A	button	will	speak	the	button	text	and	the	role	(ie.	“OK”)
– A	text	field	speaks	the	text	contents	or	the	grayed	out	prompt	text

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Accessible	Help	Property
• Accessible	Help	a	Node	property,	type	is	String	(default	is	null)
• Used	to	provide	a	longer	more	detailed	description	of	a	control

– Always	null	by	default	for	built-in	controls
–When	null,	the	tooltip	text	is	provided	to	the	Screen	Reader

• Extra	help	is	provided	when	requested
–Makes	sense	to	default	to	the	same	value	as	the	tool	tip

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	“Label	For”	Property
• “Label	For”	is	a	Label	Property,	type	is	Node	(default	is	null)
• The	labelFor property	was	previously	used	for	mnemonics	only
• Used	to	augment	the	description	of	TextFields and	ComboBoxes

–Often	used	for	text	fields	that	appear	in	configuration	dialogs

• Used	to	provide	description	for	other	kinds	of	controls
–Most	common	controls	are	ImageView,	Slider,	ProgressIndicator

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

A	Text	Field	that	uses	“Label	For”
TextField field = new TextField("Smith");
Label label = new Label("Last Name");
label.setLabelFor(field);

When	focused,	the	screen	reader	says:

“Last	name,	editable	text,		Smith”

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

A	Slider	that	uses	“Label	For”
Slider slider = new Slider(0, 100, 50);
Label label = new Label("Opacity");
label.setLabelFor(slider);

When	focused,	the	screen	reader	says:	

“Slider	Opacity,	50%”

Copyright	©	2014, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Advanced	Accessibility	API
The	JavaFX Accessibility	API

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Advanced	Accessibility	API
• Supports	direct	interaction	with	the	Screen	Reader

– Return	a	value	to	the	Screen	Reader
– Perform	an	action	on	behalf	of	the	Screen	Reader
– Notify	the	Screen	Reader	that	a	value	has	changed

• Exposes	the	“Accessibility	running”	state
– Determine	whether	accessibility	is	active

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Accessible	Methods:	Called	or	Overridden

• @override Object Node#queryAccessibleAttribute
(AccessibleAttribute, Object...)

• @override void Node#executeAccessibleAction
(AccessibleAction, Object...)

• void Node#notifyAccessibleAttributeChanged
(AccessibleAttribute)

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Accessible	Enums:	Arguments	to	the	Methods
• AccessibleRole (already	seen)

– BUTTON, CHECK_BOX, LIST_VIEW, ...

• AccessibleAttribute
– PARENT, SELECTED, TEXT, ITEM_AT_INDEX, ...

• AccessibleAction
– FIRE, EXPAND, COLLAPSE, SET_TEXT, ...

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Return	a	Value	to	the	Screen	Reader
• The	Screen	Reader	requests	the	current	state	of	a	control

– Different	state	is	requested	depending	on	the	role	of	the	control

• Example:
– Return	the	number	of	rows	in	a	list	control
– Return	the	selected	items	in	a	list	control

• Some	attributes	the	that	might	be	queried:
– AccessibleAttribute.ROW_COUNT
– AccessibleAttribute.SELECTED_ITEMS

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Overriding	queryAccessibleAttribute()
@Override	 public Object queryAccessibleAttribute(

AccessibleAttribute attribute, Object... parameters) {
switch (attribute) {

case ROW_COUNT: return getRowCount();
default:

super.queryAccessibleAttribute(attribute, parameters);

}
}

IMPORTANT:	Always	call	the	super!

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

The	Super:	Node#queryAccessibleAttribute()
@Override public Object queryAccessibleAttribute(

AccessibleAttribute attribute, Object... p) {
switch (attribute) {

case ROLE: return getAccessibleRole();
case ROLE_DESCRIPTION: return getAccessibleRoleDescription();
case TEXT: return getAccessibleText();
case PARENT: return getParent();
case BOUNDS: return localToScreen(getBoundsInLocal());
case DISABLED: return isDisabled();
case FOCUSED: return isFocused();
default: return null;

}
}

}

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Perform	an	Action	on	behalf	of	the	Screen	Reader
• The	Screen	Reader	requests	an	action	be	performed

– Actions	are	platform	specific	request	(might	be	voice	activated)

• Example:
– Activate	a	button	or	traverse	a	hyper	link
– Expand	a	tree	item	or	a	title	pane

• Some	actions	that	might	be	requested:
– AccessibleAction.FIRE
– AccessibleAction.EXPAND

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Overriding	executeAccessibleAction()
@Override	 public void executeAccessibleAction(

AccessibleAction action, Object... parameters) {

switch (action) {

case FIRE:
fire();

break;

default: super.executeAccessibleAction(action, parameters);

}

}

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Notify	the	Screen	Reader	an	Attribute	has	Changed
• The	application	changes	the	value	of	an	attribute

– The	screen	reader	must	be	informed	(it	cannot	know)

• Example:
– Focus	moves	to	a	ListView,	but	the	focus	node	is	an	item	in	the	list
– The	user	clicks	on	the	(+)	expansion	indicator	of	a	tree	item

• Some	attributes	that	the	program	changes:
– AccessibleAttribute.FOCUS_NODE
– AccessibleAttribute.EXPANDED
– AccessibleAttribute.VALUE

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Calling	notifyAccessibleAttributeChanged()
public final DoubleProperty valueProperty() {

if (value == null) {
value = new SimpleDoubleProperty(this, "value", 0) {

@Override protected void invalidated() {
adjustValues();
notifyAccessibleAttributeChanged(AccessibleAttribute.VALUE);

}
};

}
return value;

}

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Determine	whether	Accessibility	is	Active
• Accessibility	Active	is	a	Platform	property

– type	is	Boolean	(default	is	false,	true	when	Screen	Reader	active)

• Used	to	implemented	UI	to	better	suit	accessibility
• Examples:

– Replace	a	chart	or	diagram	with	a	table
– Set	additional	nodes	to	be	focus	traversable

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Making	a	Circle	Traversable
Circle circle;
...
circle.focusTraversableProperty().bind(

Platform.accessibilityActiveProperty());
...

Copyright	©	2014, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Making	Your	Code	Accessible

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

A	Quick	Accessibility	Check	List
• Use	standard	FX	Controls	as	much	as	possible

– Standard	controls	are	highly	configurable	with	CSS
– Provide	high	contrast	versions	for	custom	CSS

• Provide	text	equivalent	for	every	non-text	element
– Use	accessibleText,	helpText and/or	tool	tips
– Examples:		Provide	text	for	ImageView,	an	animation	that	shakes	etc.

• Use	“label	For”	to	connect	text	fields	and	combos	to	labels
• Ensure	that	important	nodes	are	traversable	from	the	keyboard

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

A	Complete	Example:	Bouncing	Balls
• A	Ball	is	a	Circle	that	draws	a	radial	gradient

– By	default,	its	role	is	NODE so	nothing	is	spoken
– Need	to	tell	the	user	that	it	is	a	ball	and	speak	its	state
– Balls	can	be	selected	in	order	to	stop	and	start	bouncing

• Example	Code
– apps/samples/Ensemble8/src/samples/java/ensemble/samples/graphics2d/bouncing
balls/BouncingBallsApp.java

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Bouncing	Balls

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Bouncing	Balls:	The	Unmodified	Code
• Only	the	Reset	button	is	read
• Nothing	else	is	reachable,	all	other	nodes	are	ignored

Demo:	Nothing	works

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Using	the	Accessibility	API	Properties
…
ball.setAccessibleRole(AccessibleRole.BUTTON);
ball.setAccessibleRoleDescription("Bouncing Ball");
ball.setAccessibleText(text);
ball.setAccessibleHelp("This is bouncing ball, use
the primary action to start animation");
…

Demo:	The	first	cut	at	accessible	bouncing	balls

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Bouncing	Balls:	The	“Free	Native	Traversal”
• The	balls	can	be	traversed	using	screen	reader:

–OS	X:	Using	Control	+	Option	+	Arrow
–Windows:	Using	Capslock +	Arrow

• The	Screen	Reader	will	read	each	ball	correctly
– Ex.	"First,	Bouncing	Ball”

• Control+Option+Shift+N (OS	X)	or	Capslock+F (Windows)	reads	the	
accessible	help

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Using	Accessibility	API	to	Enable	FX	Traversal	
...
focusTraversableProperty().bind(

Platform.accessibilityActiveProperty());
...

Demo:	Balls	can	be	traversed	using	the	tab	key

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Using	the	Accessibility	API	to	Execute	an	Action
@Override public void executeAccessibleAction(

AccessibleAction action, Object... parameters) {
switch (action) {

case FIRE: toggleAnimation(); break;
default:

super.executeAccessibleAction(action, parameters);
}

}
Demo:	Balls	can	be	activated	by	Screen	Reader

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

• All	text	content	and	functionality	is	available	to	the	Screen	Reader
• Extra	FX	traversal	is	enabled	only	when	Accessibility	is	active
• Control+Option+Space (OS	X)	or	Capslock+Space (Windows)	is	used	to	start	
the	animation	for	a	ball

Bouncing	Balls:	The	Final	Code

Copyright	©	2014, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Summary

Oracle	Confidential	–
Internal/Restricted/Highly	

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Which	Accessibility	API	is	Appropriate?
• The	fundamental	API	makes	simple	nodes	accessible

– Choose	a	role,	set	the	role	description,	set	the	text,	etc.

• The	advanced	API	is	used	for	custom	controls
– Full	featured:	Used	by	FX	to	make	built-in	controls	accessible

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

JavaFX Accessibility	is	Here
• Supports	native	accessibility	mechanisms

– No	extra	shared	library	or	jar	is	required

• Implements	accessibility	for	all	built-in	controls
• Provides	a	minimal	but	complete	API

– Provides	a	simple	API	for	the	most	common	cases
– Provides	an	advanced	API	for	custom	controls

Copyright	©	2015, Oracle	and/or	its	affiliates.	All	rights	reserved.		

Thanks	– Any	Questions?

