

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Building	JavaFX	UI	Controls

Jonathan	Giles
Consulting	Member	of	Technical	Staff
Java	Client	Team
Oracle	Corp

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Session	Agenda

What	is	a	UI	Control?

Changes	in	JDK	8	and	JDK	9

Ways	To	Build	a	JavaFX	UI	Control

Useful	Tips	/	Tools

Q	&	A

1

2

3

4

5

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Note:
I	last	gave	this	talk	at	JavaOne 2014.
If	you	attended	this	talk,	the	core	content	is	largely	the	same.
But: these	slides	are	updated	to	cover	the	latest	API	developments	in	JDK	8	and	JDK	9.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	is	a	UI	Control? Visual

User	interactive

Has	state

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JavaFX UI	Controls
• UI	controls	in	JavaFX can	be	loosely	defined	as	follows:

– A	JavaFX	Node	
• It	does	not	necessarily	extend	from	Control
• A	UI	control	could	also	be	canvas-based,	but	I	won’t	cover	that	in	depth	today

– Typically	styled	using	JavaFX	CSS	
• But	not	required

– Typically	designed	to	be	reusable
• But	not	required

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	is	a	Node?
• Everything	in	the	JavaFX	scene	graph	is	a	Node.
• UI	controls	consist	of	many	Nodes.
– Less	is	always	better
– But	need	enough	to	get	the	desired	styling

ScrollBar RegionTrack	RegionLeft	Button	Region Right	Button	Region

Left	Arrow	Region Thumb	Region Right	Arrow	Region

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Retained	Mode	Rendering
• For	the	most	part,	JavaFX	uses	‘Retained	Mode’	rendering.
• This	basically	means,	we	don’t	draw	directly,	the	scenegraph handles	that.

• There	is	one	exception:	the	Canvas	node	allows	for	‘immediate	mode’	
rendering.
– Canvas	is	Java2D-like,	but	we	do	not	use	it	for	our	JavaFX	UI	controls	at	all.
– It	removes	all	of	the	power	of	the	scenegraph (no	layouts,	no	CSS,	no	event	handling,	
etc).

– It	has	its	uses….but	for	most	UI	controls	it	is	not	the	best	option.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Why	use	CSS?
• “I’m	a	Java	developer,	not	a	*censored*	CSS	
expert!”
• I	hear	you	– being	asked	to	use	CSS	can	be	
scary	at	the	outset.
• Trust	me	– it	is	powerful	and	very,	very	nice	
once	you	get	used	to	it.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Scene	Builder

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Scene	Builder

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Scene	Builder

.root {
-fx-base: rgb(50, 50, 50);
-fx-background: rgb(50, 50, 50);
-fx-control-inner-background: rgb(50, 50, 50);

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Scene	Builder

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Scene	Builder

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Example:	Scene	Builder

.root {
-fx-base: #7eaacc;
-fx-background: #7eaacc;
-fx-control-inner-background: white;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Changes	in	JDK	8

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Controls-related	changes	in	JDK	8	
• JDK	8	was	released	March	2014,	with:
– SkinBase was	made	public	API
–More	CSS	API	is	public
– Right-to-Left	support
– New	default	style	(Modena)
– New	controls	(DatePicker,	TreeTableView)
– Lambdas!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Lambdas
// option 1: the old, verbose style

rect.setOnMouseClicked(new EventHandler<MouseEvent>() {

@Override public void handle(MouseEvent event) {

handleMouseEvent(event);

}

});

// option 2: use bracketed lambdas

rect.setOnMouseClicked(event -> {

handleMouseEvent(event);

});

private void handleMouseEvent(MouseEvent event) {
System.out.println(event);

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Lambdas
// option 3: get rid of brackets

rect.setOnMouseClicked(event -> handleMouseEvent(event));

// option 4: use method reference

rect.setOnMouseClicked(this::handleMouseEvent);

private void handleMouseEvent(MouseEvent event) {
System.out.println(event);

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Controls-related	changes	in	JDK	8	
• JDK	8u20	was	released	August	2014,	with:
– A	huge number	of	UI	controls	bug	fixes!
– CSS	API	improvements	(less	coding	required)

• JDK	8u40	was	released	March	2015,	with:
– New	UI	controls	(Spinner,	Formatted	TextField,	Dialogs)
– Accessibility	API	(with	support	for	all	UI	controls)

• JDK	8u60	was	released	August	2015,	with:
– A	huge number	of	UI	controls	bug	fixes!
– API	improvements	to	ListView,	TableView,	etc

Bug	fix	release

Feature	release

Bug	fix	release

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	surface	area	of	a	UI	control
• Writing	UI	controls	is	fun,	but	they	have	a	massive	surface	area:
– API	design
– Visuals
– Behavior	(keyboard	/	mouse)
– Unit	testing
– Documentation
– Accessibility	(screen	readers)
– Right-to-left	layout

• When	new	functionality	arrives	in	JavaFX	(e.g.	a11y	or	RTL),	all	controls	
need	updating!

Confidential	– Oracle	Internal/Restricted/Highly	Restricted 23

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Controls-related	changes	coming	in	JDK	9
• Since	freezing	on	8u60,	focus	has	been	primarily	on	JDK	9,	coming	in	2017.

• JDK	9	is	the	‘jigsaw’	/	modules	release.
– A	huge amount	of	work	has	been	expended	on	modules!
–Modules	ate	up	nearly	all	‘feature’	time.

• For	UI	controls:
– Primary	focus	has	been	on	JEP	253
–More	than	175	bug	fixes	and	16	enhancements	in	controls	as	well

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell
• Most	UI	controls	are	split	into	three	components:

Control

Behavior

Skin

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell
• Most	UI	controls	are	split	into	three	components:

Control

Behavior

Skin

Public	API
(javafx.scene.control)

Private	Implementation
(com.sun.javafx.scene.control.*)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell
• UI	Controls	and	CSS	APIs	have	always	had	public	API	and	‘private’	API
–Many	projects	can’t	resist	the	urge	to	use	com.sun.*	API.
– Always	frowned	upon,	but	never	prevented	(and	impossible	to	prevent	anyway).

• JDK	9	with	Jigsaw	modularity	is	a	big	game	changer:
– Up	until	JDK	9,	developers	could	use	API	in	com.sun.*	packages.
– JDK	9	enforces	boundaries	- com.sun.*	becomes	unavailable

• Some	JavaFX	apps	and	libraries	will	fail	to	compile	/	execute	under	JDK	9.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell

Control

Behavior

Skin

Public	API
(javafx.scene.control)

Private	Implementation
(com.sun.javafx.scene.control.*)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell
• Why	do	people	need	to	use	these	APIs?

• Many	applications	need	functionality	we	just	haven’t	got	around	to	making	
public	yet!

• Many	custom	controls	base	their	skins	on	existing	skins,	e.g.
– CustomTextFieldSkin extends	TextFieldSkin
– TextFieldSkin no	longer	available	at	compile	time

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell

Control

Behavior

Skin

Private	Implementation
(com.sun.javafx.scene.control.*)

Public	API
(javafx.scene.control)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell

Control

Behavior

Skin

Public	API
(javafx.scene.control) Private	Implementation

(com.sun.javafx.scene.control.*)

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	In	A	Nutshell
• Overall,	JEP	253	is	’finished’	(barring	internal	testing):
– All	code	has	been	merged	into	JDK	9	main	repo	for	over	a	year

• It’s	critical that	the	community	test	and	give	feedback	on	JDK	9	as	soon	as	
possible!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Ways	To	Build	a	JavaFX	UI	Control

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview
• What	constitutes	a	UI	control	is	loosely	defined.

• Plan	for	today:
– Four	different	ways	to	build	a	UI	control	– start	with	simplest…
–…Then	transform	it	to	be	closer	to	what	I	do	in	my	day	job,	i.e.	a	‘proper’	Control.

• What	are	we	going	to	build?

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Introducing:	The	JavaOneButton!
• Our	requirements:
–Our	client	has	come	to	us	with	a	new	project
– Very	specific UI	design	requirements!
–Must	respond	to	mouse	events
–Must	give	a	visual	indication	of	being	in	normal,	pressed,	and	hovered	states

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Code
• Don’t	worry	about	taking	notes	of	the	code	in	these	slides.

• All	code	demonstrated	is	available	online:

http://bitbucket.org/JonathanGiles/javaone-controls

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Options	for	Building	Custom	Controls

There	are	four	main	approaches:
1. Customise	an	existing	control	with	CSS
2. Customise	an	existing	control	by	replacing	the	skin
3. Creating	a	new	control	by	extending	a	layout	container
4. Creating	a	new	control	by	extending	from	the	Control	class

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1:	
Customise	An	Existing	Control
With	CSS

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1:	Customise	An	Existing	Control	with	CSS
• Moment	of	clarity!
• JavaOneButton sounds	remarkably like	the	JavaFX Button	control
• Unfortunately,	it	looks	nothing	like	my	client	wants	it	to	look	like…

• CSS	to	the	rescue!

!=

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1:	Customise	An	Existing	Control

public class JavaOneButton extends Button {

public JavaOneButton(String text) {

super(text);

getStyleClass().add("javaone-button");

}

}

Java	Code:
.javaone-button {

-fx-base: red;
-fx-rotate: -5;
-fx-scale-x: 2.5;
-fx-scale-y: 2.5;

}

CSS:

modena.css	/
caspian.css

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1:	Customise	An	Existing	Control

Button normalButton = new Button("Disappointing Normal Button");

JavaOneButton javaOneButton = new JavaOneButton("Hello JavaOne!");

scene.getStylesheets().add(JavaOneButton.class.getResource("javaone-button.css").toExternalForm());

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1:	Customise	An	Existing	Control

Success!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1	Discussion

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

1:	Was	creating	JavaOneButton necessary?
• It	was	not necessary
• We	could	have	just	done	this:

– Problem	with	this	approach:
• Less	reusable	(everyone	must	always	do	the	second	line)
• More	prone	to	refactoring	errors
• More	verbose

Button javaOneButton = new Button("Hello JavaOne!");
javaOneButton.getStyleClass().add("javaone-button");

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

2:	Was	creating	a	‘javaone-button’	style	class	necessary?
• All	JavaFX	UI	controls	have	default	style	classes	set	in	them
– E.g.	Button	has	.button

• So,	why	didn’t	we	just	use	the	.button style	class?

.button {
-fx-base: red;
-fx-rotate: -5;
-fx-scale-x: 2.5;
-fx-scale-y: 2.5;

}

.javaone-button {
-fx-base: red;
-fx-rotate: -5;
-fx-scale-x: 2.5;
-fx-scale-y: 2.5;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

2:	Was	creating	a	‘javaone-button’	style	class	necessary?

It	might	not	be	what	you	want!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

3:	Can	we	remove	requirement	to	manually	import	CSS	file?
• It	is	possible to	avoid	requiring	users	to	manually	import	the	css file.
– Rather	than	the	end-user	doing	this:

–We	could	have	added	the	following	code	to	JavaOneButton:

• End	result:	CSS	is	encapsulated	inside	the	custom	control	(where	it	belongs)

scene.getStylesheets().add(
JavaOneButton.class.getResource("javaone-button.css").toExternalForm());

@Override public String getUserAgentStylesheet() {
return JavaOneButton.class.getResource("javaone-button.css").toExternalForm();

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

3:	Can	we	remove	requirement	to	manually	import	CSS	file?

Button normalButton = new Button("Disappointing Normal Button");

JavaOneButton javaOneButton = new JavaOneButton("Hello JavaOne!");

scene.getStylesheets().add(JavaOneButton.class.getResource("javaone-button.css").toExternalForm());

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	1:	In	Conclusion
• If	a	UI	control	exists	with	the	API	you	want,	and	the	skin	is	already	pretty	
much	what	you	want…	option	1	should	work	for	you!
• It	is	possible	to	encapsulate	all	changes	to	the	control	in	a	new	subclass,	
e.g.	JavaOneButton
• Developer	does	not	need	to	do	anything	special	to	use	it

• I’ll	be	briefly	talking	about	this	again	tomorrow	at	11am:
‘Welcome	to	the	Next	Level:	Java	9	+	Gluon	+	Mobile’

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	2:	
Customise	An	Existing	Control	
By	Replacing	The	Skin

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	2:	Customise	control	with	new	skin
• Sometimes	there	are	just	not	enough	nodes	in	the	existing	skin	for	CSS	to	
style.

ScrollBar RegionTrack	RegionLeft	Button	Region Right	Button	Region

Left	Arrow	Region Thumb	Region Right	Arrow	Region

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	2:	Customise	control	with	new	skin
• Sometimes	there	are	just	not	enough	nodes	in	the	existing	skin	for	CSS	to	
style.

• Creating	a	custom	skin	allows	us	total	freedom	to	put	in	the	nodes	that	we	
need.

ScrollBar RegionLeft	of	Thumb	RegionLeft	Button	Region Right	Button	Region

Left	Arrow	Region Thumb	Region Right	Arrow	RegionRight	of	Thumb	Region

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	2:	Customise	control	with	new	skin
• We	will	cover	custom	skins	more	when	we	get	to	option	4.

• Briefly	though,	there	are	two	options:
– Starting	a	new	skin	from	scratch	(covered	later	in	option	4)
– Starting	in	JDK	9,	all	JavaFX	UI	control	skins	are	public	API
• This	means	that	you	can,	if	desired,	extend	from	them

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	2:	Customise	control	with	new	skin
• Once	a	new	skin	is	created:
– Create	a	subclass	of	the	control,	
–Overide createDefaultSkin,	e.g.:

@Override protected Skin<?> createDefaultSkin() {

return new CustomButtonSkin(this);

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
• OK	– Option	one	and	two	seems	perfect,	why	would	we	ever	use	a	different	
approach?

• A	few	reasons:
– The	UI	control	API	you	want	might	not	exist.	Someone	has	to	build	the	first	one!
–What	if	the	behaviour	or	visuals	of	the	UI	control	are	not	as	you	want.
• API	or	functionality	might	be	too	inflexible	(or	too	flexible)	for	your	liking

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container

• “Extend	from	a	JavaFX	layout	container???”
– But	which	one?!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container

Node

Parent

Region

Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Node

Parent

Region

Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Option	3:	Extend	A	Layout	Container

Node:	Never!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Node

Parent

Region

Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Option	3:	Extend	A	Layout	Container

Parent:	
Adds	concept	of	protected
children.

Not	overly	CSS	styleable.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Node

Parent

Region

Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Option	3:	Extend	A	Layout	Container

Region:	Essentially	a	more	
CSS	styleable Parent.

Children	list	still	protected,	
so	good	if	you	don’t	want	
people	modifying	list.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Node

Parent

Region

Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Option	3:	Extend	A	Layout	Container

Pane:	Pane	is	a	Region,	but	
with	a	publicly	accessible	
children	list.

Good	if	you	want	people	to	
modify	children.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Node

Parent

Region

Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Option	3:	Extend	A	Layout	Container

Layout	containers:	Great	if	you	
want	to	use	the	pre-specified	
layout	algorithm.	

Commonly	used:	StackPane,	
HBox,	VBox,	BorderPane

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
• For	JavaOneButton,	we	could	reasonably	pick	two	options:
– Region:	
• Pros:	CSS	styleable,	no	public	API	access	to	children	list
• Cons:	We	have	to	write	the	layout	code	ourselves

– StackPane:
• Pros:	CSS	styleable,	default	layout	algorithm	will	suffice	for	a	text-only	button
• Cons:	We’re	leaking	more	API	than	desirable	(we	don’t	want	people	to	modify	children	directly)

• My	preference	in	this	case:	use	Region

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

public class JavaOneButton extends Region {

private static final PseudoClass PSEUDO_CLASS_ARMED =
PseudoClass.getPseudoClass("armed");

private final Label textLabel;

public JavaOneButton(String text) {

getStyleClass().add("javaone-button");

setFocusTraversable(true);

textLabel = new Label();

textLabel.textProperty().bind(textProperty);

getChildren().add(textLabel);

setText(text);

addEventHandler(MouseEvent.MOUSE_PRESSED, e -> {

pseudoClassStateChanged(PSEUDO_CLASS_ARMED, true);

requestFocus();

});

addEventHandler(MouseEvent.MOUSE_RELEASED, e -> {

pseudoClassStateChanged(PSEUDO_CLASS_ARMED, false);

});

}

// --- text
private StringProperty textProperty =

new SimpleStringProperty(this, "text");

public final StringProperty textProperty() { return textProperty; }

public final String getText() { return textProperty.get(); }

public final void setText(String text) { textProperty.set(text); }

Option	3:	Extend	A	Layout	Container

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
@Override protected double computeMinWidth(double height) {

return textLabel.minWidth(height);

}

@Override protected double computeMinHeight(double width) {

return textLabel.minHeight(width);

}

@Override protected double computeMaxWidth(double height) {

return computePrefWidth(height);

}

@Override protected double computeMaxHeight(double width) {

return computePrefHeight(width);

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
@Override protected double computePrefWidth(double height) {

return textLabel.prefWidth(height) +

snappedLeftInset() +

snappedRightInset();

}

@Override protected double computePrefHeight(double width) {

return textLabel.prefHeight(width) +

snappedTopInset() +

snappedBottomInset();

} textLabel

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
@Override protected void layoutChildren() {

final double x = snappedLeftInset();

final double y = snappedTopInset();

final double w = getWidth() - (snappedLeftInset() + snappedRightInset());

final double h = getHeight() - (snappedTopInset() + snappedBottomInset());

textLabel.resizeRelocate(x, y, w, h);

}

x

y

w	

htextLabel

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
@Override public String getUserAgentStylesheet() {

return JavaOneButton.class.getResource("javaone-button.css").toExternalForm();

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container
.javaone-button {

-fx-base: red;
-fx-rotate: -5;
-fx-scale-x: 2.5;
-fx-scale-y: 2.5;

/* This section copied verbatim from modena.css */
-fx-background-color: -fx-shadow-highlight-color, -fx-outer-border, -fx-inner-border, -fx-body-color;
-fx-background-insets: 0 0 -1 0, 0, 1, 2;
-fx-background-radius: 3px, 3px, 2px, 1px;
-fx-padding: 0.333333em 0.666667em 0.333333em 0.666667em; /* 4 8 4 8 */
-fx-text-fill: -fx-text-base-color;
-fx-alignment: CENTER;
-fx-content-display: LEFT;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container

.javaone-button:armed {
-fx-color: -fx-pressed-base;

}

.javaone-button:hover {
-fx-color: -fx-hover-base;

}

.javaone-button:focused {
/* This section copied verbatim from modena.css */
-fx-background-color: -fx-focus-color, -fx-inner-border, -fx-body-color, -fx-faint-focus-color, -fx-body-color;
-fx-background-insets: -0.2, 1, 2, -1.4, 2.6;
-fx-background-radius: 3, 2, 1, 4, 1;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container

Success!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	3:	Extend	A	Layout	Container	– A	Few	Comments

• Option	3	requires	more	coding…

• …But	it	gives	us	much	more	control	to	do	what	we	want

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
• This	takes	us	to	option	4	– using	the	JavaFX	Control	API

• This	is	different	from	option	2:
–Option	2	extends	from	a	Control	subclass,	e.g.	Button
–Option	4	extends	from	Control	itself

• This	approach	results	in	the	cleanest	code
– Separation	of	state	from	visuals
– Easier	to	ship	API	in	separate	class	from	implementation
• Use	separate	packages	for	API	and	impl,	then	hide	impl from	javadoc and	/	or	use	modules!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control

Node

Parent

Region

Control Pane

AnchorPane BorderPane FlowPane GridPane HBox StackPane TilePane VBox

Control:	Children	list	
remains	protected.

Adds	concept	of	Skins	–
every	Control	can	have	a	
Skin	to	handle	its	layout.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
• In	essence,	we	split	the	Option	3	JavaOneButton class	into	two	classes:
– JavaOneButton extends	from	Control,	instead	of	Region
– JavaOneButtonSkin extends	from	SkinBase

• Lets	get	into	the	code!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
public class JavaOneButton extends Control {

public JavaOneButton(String text) {

getStyleClass().add("javaone-button");

setFocusTraversable(true);

setText(text);

}

// --- text

private StringProperty textProperty = new SimpleStringProperty(this, "text");

public final StringProperty textProperty() { return textProperty; }

public final String getText() { return textProperty.get(); }

public final void setText(String text) { textProperty.set(text); }

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
@Override public String getUserAgentStylesheet() {

return JavaOneButton.class.getResource("javaone-button.css").toExternalForm();

}

@Override protected Skin<?> createDefaultSkin() {

return new JavaOneButtonSkin(this);

}

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
public class JavaOneButtonSkin extends SkinBase<JavaOneButton> {

private static final PseudoClass PSEUDO_CLASS_ARMED = PseudoClass.getPseudoClass("armed");

private final Label textLabel;

protected JavaOneButtonSkin(JavaOneButton control) {

super(control);

textLabel = new Label();

textLabel.textProperty().bind(control.textProperty());

getChildren().add(textLabel);

control.addEventHandler(MouseEvent.MOUSE_PRESSED, e -> {

pseudoClassStateChanged(PSEUDO_CLASS_ARMED, true);

control.requestFocus();

});

control.addEventHandler(MouseEvent.MOUSE_RELEASED, e -> pseudoClassStateChanged(PSEUDO_CLASS_ARMED, false));

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
@Override protected double computeMinWidth(double height, double topInset, double rightInset, double bottomInset, double leftInset) {

return textLabel.minWidth(height);

}

@Override protected double computeMinHeight(double width, double topInset, double rightInset, double bottomInset, double leftInset) {

return textLabel.minHeight(width);

}

@Override protected double computePrefWidth(double height, double topInset, double rightInset, double bottomInset, double leftInset) {

return textLabel.prefWidth(height) + leftInset + rightInset;

}

@Override protected double computePrefHeight(double width, double topInset, double rightInset, double bottomInset, double leftInset) {

return textLabel.prefHeight(width) + topInset + bottomInset;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
@Override protected double computeMaxWidth(double height, double topInset, double rightInset, double bottomInset, double leftInset) {

return computePrefWidth(height, topInset, rightInset, bottomInset, leftInset);

}

@Override protected double computeMaxHeight(double width, double topInset, double rightInset, double bottomInset, double leftInset) {

return computePrefHeight(width, topInset, rightInset, bottomInset, leftInset);

}

@Override protected void layoutChildren(double x, double y, double w, double h) {

textLabel.resizeRelocate(x, y, w, h);

}

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control
• The	CSS	remains	exactly the	same	as	we	had	in	option	3.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control

Button normalButton = new Button("Disappointing Normal Button");

JavaOneButton javaOneButton = new JavaOneButton("Hello JavaOne!");

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Option	4:	Extend	From	Control

Success!

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Useful	Tips	/	Tools

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CSS	Styleable Properties
• We	covered	CSS	pseudo	classes	in	options	3	and	4
– Recall	a	pseudo	class	is	the	part	after	the	colon,	e.g.	‘hover’:

• But	we	didn’t	cover	how	to	create	custom	styleable properties
– E.g.,	‘javaone-year’:

.javaone-button:hover {
-fx-color: -fx-hover-base;

}

.javaone-button {
javaone-year: 2014;

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CSS	Styleable Properties
public class JavaOneButton extends Button {

private static final StyleablePropertyFactory<JavaOneButton> FACTORY = new StyleablePropertyFactory<>(Button.getClassCssMetaData());

private final StyleableProperty<Integer> javaoneYear =
FACTORY.createStyleableIntegerProperty(this, "javaoneYear", "javaone-year", s -> s.javaoneYear);

// Typical JavaFX property implementation
public final IntegerProperty javaoneYearProperty() { return (IntegerProperty)javaoneYear; }
public final int getJavaoneYear() { return javaoneYear.getValue(); }
public final void setJavaoneYear(int value) {javaoneYear.setValue(value); }

@Override public List<CssMetaData<? extends Styleable, ?>> getControlCssMetaData() {
return FACTORY.getCssMetaData();

}

}

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Multiple	Style	Classes
• In	JavaFX	you	can	have	multiple	style	classes	on	a	node.
• For	example,	you	could	add	‘javaone’	to	a	single	Button	instance,	so	you’d	
have	two	styleclasses:	‘javaone’	and	‘button’.

• You	can	then	have	CSS	like	this:
.button {

-fx-color: gray;
}
.button.javaone {

-fx-color: red;
}

Confidential	– Oracle	Internal/Restricted/Highly	Restricted 89

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Get	To	Know	Modena	/	Caspian
• UI	controls	are	entirely	styled	via	CSS	styles
– JavaFX 2.x	– Caspian
– JavaFX	8.x	– Modena

• If	you	want	to	know	how	UI	controls	are	styled,	these	are	the	authoritative	
source.

• Files	are	in	com.sun.javafx.scene.control.skin package.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Refer	to	the	CSS	Reference	Guide
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Scenegraph Updates
• Don’t	modify	the	scenegraph needlessly	– this	isn’t	free!
– Toggle	visibility	instead	(if	the	number	of	nodes	is	small)

• JavaFX updates	the	screen	at	60	FPS
– Events	can	fire	at	many	times	this	rate
– Don’t	be	tempted	to	update	the	UI	on	every	event	– it	won’t	make	the	UI	any	more	
‘fluid’.

– A	good	way	to	do	this	is	to	batch	up	your	work	and	run	at	the	start	of	the	
layoutChildren()	method.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Join	The	OpenJFX Community
• Join	the	openjfx-dev mailing	list	and	start	contributing!
– http://openjdk.java.net/projects/openjfx/

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

File	Bug	Reports
• Don’t	assume	that	we	know	every	bug	that	exists!	We	don’t.
• Report	bug	reports,	and	discuss	your	issues	on	the	openjfx-dev	mailing	list

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Use	Scenic	View!
• Scenic	View	is	a	free,	open	source	JavaFX	scenegraph analyser.

• Download	and	find	out	more	about	Scenic	View	here:
– http://www.scenic-view.org

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 96

Tree	showing	
scenegraph
structure	of	
running	

application

The	most	
important	

properties	for	the	
selected	node

Application	
overview

Scenic	View	in	a	Nutshell

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Scenic	View	in	a	Nutshell Scenic	View	can	draw	
overlays	in	the	application	

it	is	observing.

The	green	dashed	rectangle	
shows	the	layoutBounds,	
and	the	yellow	filled	
rectangle	shows	the	
boundsInParent.

This	can	be	very	useful	for	
debugging.

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

FX	Experience
• Follow	the	FX	Experience	blog	for	the	latest	news	/	geekery on	JavaFX
– http://www.fxexperience.com

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Coming	Up	Tonight:
Meet	the	Oracle	JavaFX	and	JDK Client Team,	in	here	7:00pm	– 7:45pm
JavaFX	Scenic	View	BOF,	in	here	8:00pm	– 8:45pm

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Coming	Up	Tomorrow:
Gerrit Grunwald and	Todd	Costella are	presenting	a	hands-on	lab	on	JavaFX	Controls.

Customize	Your	JavaFX	Controls
Tuesday,	Sep	20,	8:30	a.m.	- 10:30	a.m.	|	Hilton—Franciscan	Room	C/D

Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Thanks	for	Attending!

It’s	Question	&	Answer	Time!
Email:	Jonathan.giles@oracle.com
Twitter:	@JonathanGiles

Remember,	all	code	from	this	talk	is	available	here:
http://bitbucket.org/JonathanGiles/javaone-controls

