




Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JavaFX:	New	&	Noteworthy

Kevin	Rushforth &	Jonathan	Giles	
Java	Client	Group
September	19,	2016



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	outline	our	general	product	direction.	It	is	intended	for	
information	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	functionality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	timing	of	any	features	or	
functionality	described	for	Oracle’s	products	remains	at	the	sole	discretion	of	Oracle.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Agenda

JDK	8	Update	Releases

Coming	up	in	JDK	9

Looking	beyond	JDK	9	– update	releases	and	JDK	10

Q	&	A

1

2

3

4



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	Update	Releases

6



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	Update	Releases
• Typically	JDK	update	releases	are	not	intended	to	be	feature	releases
• For	JavaFX,	we	have	shipped	substantial	improvements:
– 8u20	
• 723	bugs	fixed	and	83	enhancements

– 8u40
• Accessibility,	new	controls	(Spinner,	Filtered	Text,	Dialogs),	LCD	text	on	Canvas,	3D	user-defined	normals.
• 562	bugs	fixed	and	89	enhancements

– 8u60
• Upgraded	to	newer	WebKit,	and	improved	High-DPI	support	on	Windows.
• 257	bugs	fixed	and	29	enhancements

7



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	Maintenance	Releases
• All	development	effort	is	on	JDK	9
• No	post-8u60	enhancements	for	JDK	8	line
• A	few critical	bug	fixes	can	be	backported	to	our	
quarterly	releases
– 8u102	released	on	19	July	2016
– 8u112	scheduled	for	18	Oct	2016
– 8u122	scheduled	for	17	Jan	2017
– Etc.

8



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Coming	up	in	JDK	9

9



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Coming	up	in	JavaFX	in	JDK	9
• Jigsaw	modules
– JavaFX	is	now	modularized
– Strong	encapsulation
– JEP	253:	Public	UI	Control	skins	and	more	CSS	APIs
– New	APIs	for	previously	non-public	features

• Other	improvements:
– High	DPI:	Linux	support	+	API	to	query	&	control	scaling
– JEP	283:	Enable	GTK	3	on	Linux
– Updated	GStreamer and	WebKit
– Smaller	enhancements	+	Bug	fixes



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity

11



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity
• Jigsaw	Modularity	is	the primary	feature	for	JDK	9
– JEP	200:	The	Modular	JDK (Umbrella)
• JEP	201:	Modular Source	Code
• JEP	220:	Modular	Run-Time	Images
• JEP	260:	Encapsulate Most	Internal APIs
• JEP	261:	Module	System

• Modularizing	JavaFX	is	our	main	goal	for	JDK	9!
– JDK-8092093:	Modularization	support	for	JavaFX	(Umbrella)
– This	was	(and	is)	a	very	large	effort
– The	lack	of	non-Jigsaw-related	‘big-ticket’	features	is	a	result
• We	did	add	several	“smaller”	enhancements	(more	later)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	Properties	of	Modules
• A	module	is	a	collection	of	packages
– A	package	belongs	to	exactly	one	module
– Split	packages	have	long	been	discouraged;	with	modules	they	are	forbidden

• A	module	is	one	of:
– Explicit	module:	a	module	that	is	defined	by	a	module-info.java	file
– Automatic	(implicit)	module:	a	jar	file	on	the	module-path	without	a	module-info.java
– Unnamed	module:	classes	on	the	classpath are	in	the	“unnamed”	module

13



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	Properties	of	Modules
• An	explicit	module	lists	its	inputs	(requires)	and	outputs	(exports)	in	its	
module-info.java	file
–Only	exported	packages	are	visible	(more	on	this	later)
– It	can	only	access	packages	from	modules	that	it	reads	(requires)

• An	automatic	module	exports	all	packages	and	reads	all	modules	and	the	
unnamed	module
– Useful	for	transitioning	non-modular	applications

• The	unnamed	module	also	exports	all	packages	and	reads	all	modules
– An	explicit	module	cannot	“require”	the	unnamed	module
– Provides	compatibility	(no	need	to	explicitly	list	the	modules	that	you	access)

14



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	Properties	of	Modules

• The	java	launcher	loads	only	the	transitive	closure	of	modules	required	by	
the	application
– All	default	modules	loaded	if	your	application	main	class	is	in	the	unnamed	module

• javapackager can	produce	a	bundled	app	with	only	needed	modules

15



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Modules
• JavaFX	source	code	is	organized	as	modules

16

modules/
javafx.base/
javafx.controls/
javafx.graphics/
...



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Modules
• JavaFX	classes	and	resources	are	linked	into	the	JDK	image
– No	more	jfxrt.jar

• SWT	interop	is	still	delivered	as	a	separate	jar	file:
– Cannot	be	linked	into	runtime	image	because	it	depends	on	third-party	swt.jar
– It	is	an	“automatic”	module	(meaning	no	module-info.class)
– Renamed	to	javafx-swt.jar	(formerly	jfxswt.jar)
• Automatic	module	name	is	derived	as:	javafx.swt

17



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	ModulesJRE	Modules

Jigsaw	Modularity:	JavaFX	Modules

18

Public
javafx.base
javafx.controls
javafx.fxml
javafx.graphics
javafx.media
javafx.swing
javafx.web

Public
jdk.packager
jdk.packager.services

Internal
javafx.deploy [closed]



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Modules
• JavaFX	module	graph	for	runtime	(JRE)	modules:	transitive	reduction

19

javafx.graphics

javafx.controls

javafx.base

javafx.mediajavafx.fxml javafx.swing

javafx.web



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Modules
• All	JavaFX	applications	require	javafx.graphics

20

javafx.graphics

javafx.controls

javafx.base

javafx.mediajavafx.fxml javafx.swing

javafx.web



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Modules
• All	JavaFX	UI	applications	require	javafx.controls

21

javafx.graphics

javafx.controls

javafx.base

javafx.mediajavafx.fxml javafx.swing

javafx.web



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	Application	Impact
• Classes	in	non-modular	applications	are	in	the	“unnamed”	module
– By	default,	the	unnamed	module	reads	(requires)	all	named	modules	in	the	system
– Can	access	public	types	in	publicly	exported	packages	of	all	modules	without	changes

• Modular	applications	need	to	list	their	dependencies	in	module-info.java
– Exported	packages	of	required	modules	are	accessible
– Here	is	a	minimal	module-info.java	for	an	application	that	uses	the	javafx.controls,	
javafx.graphics,	and	javafx.base modules	(controls	re-exports	graphics	and	base)

22

module my.app {
requires javafx.controls;

}



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Packages
• Only	publicly	documented	packages	are	exported
– All	are	in	the	javafx.* namespace

23

javafx.base module
package javafx.beans;
package javafx.beans.binding;
package javafx.beans.property;
package javafx.beans.property.adapter;
package javafx.beans.value;
package javafx.collections;
package javafx.collections.transformation;
package javafx.event;
package javafx.util;
package javafx.util.converter;

javafx.controls module
package javafx.scene.chart;
package javafx.scene.control;
package javafx.scene.control.cell;
package javafx.scene.control.skin;

javafx.fxml module
package javafx.fxml;



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	JavaFX	Packages

24

javafx.graphics module
package javafx.animation;
package javafx.application;
package javafx.concurrent;
package javafx.css;
package javafx.css.converter;
package javafx.geometry;
package javafx.print;
package javafx.scene;
package javafx.scene.canvas;
package javafx.scene.effect;
package javafx.scene.image;
package javafx.scene.input;
package javafx.scene.layout;
package javafx.scene.paint;
package javafx.scene.shape;
package javafx.scene.text;
package javafx.scene.transform;
package javafx.stage;

javafx.media module
package javafx.scene.media;

javafx.swing module
package javafx.embed.swing;

javafx.web module
package javafx.scene.web;



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Jigsaw	Modularity:	Availability
• Changes	for	JavaFX	modularity	are	in	the	main	OpenJFX repo:
– http://hg.openjdk.java.net/openjfx/9-dev/rt

• Stable	early	access	JDK	9	builds	are	available	on	java.net:
– https://jdk9.java.net/download/
– These	builds	include	the	javafx.*modules

• Early	access	Jigsaw	builds	from	jake sandbox	also	on	java.net:
– https://jdk9.java.net/jigsaw/
– This	includes	“work	in	progress”	proposed	changes	for	setAccessible,	etc.
– These	builds	also	include	the	javafx.*modules
– Please	download	this	and	test	your	application!

25



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Strong	Encapsulation

Oracle	Confidential	– Internal/Restricted/Highly	Restricted 26



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Encapsulation	of	Modules
• Only	explicitly	exported	packages	are	visible
– Provides	strict	encapsulation	of	implementation	details
– Internal	“API”	is	no	longer	accessible
– Accessing	any	type	in	a	non-exported	package	will	result	in	an	error
• And	no,	you	can’t	simply	use	reflection	to	call	setAccessible
• This	can	be	overridden	with	“--add-exports”	command	line	switch	in	extreme	need

• Within	exported	packages,	only	public	types	are	accessible
– Accessing	any	non-public	type	will	result	in	an	error
• As	with	the	previous	case,	you	can’t	simply	use	reflection	to	call	setAccessible
• This	can	be	overridden	with	“--add-exports-private ”	command	line	switch	in	extreme	need

27



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Encapsulation	of	Modules
• Strong	encapsulation	means	the	supported-ness	of	an	API	is	clear:
– Each	module	that	you	access	lists	its	publicly	exported	packages
– A	class	or	method	you	can	access	without	breaking	encapsulation	(that	is,	without	
using	--add-exports or –add-exports-private)	is	part	of	the	API

– No	risk	of	“hidden”	dependencies	on	internal	methods	/	implementation	details

• Non-modular	apps	that	only	use	public	API	will	run	unmodified
• Some	modifications	may	be	needed	when	migrating	app	to	modules

28



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Encapsulation:	Impact	on	Modular	Applications
• Launching	a	JavaFX	Application
– The	JavaFX	launcher	constructs	an	instance	of	your	Application	subclass
– This	means	JavaFX	must	be	able	to	access	that	class
– You	need	to	export	the	containing	package	to	javafx.graphics (or	publicly)
– Example:

module my.app {
requires javafx.controls;

exports my.pkg to javafx.graphics;
}



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Encapsulation:	Impact	on	Modular	Applications
• Annotating	non-public	types	with	@FXML
– FXML	needs	ability	to	access	your	private	fields	and	methods
– You	need	to	“exports private”	your	package	to	javafx.fxml
– Example:

module my.app {
requires javafx.controls;
requires javafx.fxml;

exports private my.pkg to javafx.fxml;
}



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Resource	Encapsulation:	Impact	on	Modular	Applications
• Resources	are	encapsulated	similarly	to	classes
• Class.getResource()	will	find	resources	in	modules	if	package	is	accessible
– No	more	“dipping	into”	the	internals	to	load	another	module’s	resource

• ClassLoader.getResource()	will	not	find	resources	in	module
– A	modular	app	cannot	simply	use	"/some/path/myresource.css"	as	stylesheet	URL



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Resource	Encapsulation:	Impact	on	Modular	Applications
• JavaFX	has	several	APIs	that	take	a	URL	(or	url String)
– CSS	Stylesheets
– FXMLLoader
– Image	&	Media
–WebEngine

• A	non-modular	app	can	continue	to	use	ClassLoader-relative	URLs
• Modular	applications	should	use	Class.getResource()	instead



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Encapsulation	of	impl_	“API”
• JavaFX	has	always	had	public	methods	that	started	with	‘impl_’,	e.g.
– Image.impl_getUrl() or	ContextMenu.impl_showRelativeToWindow()

• These	were	hidden	from	API	docs	and	marked	@Deprecated	to	indicate	that	
applications	should	not	use	them
–Most	of	these	were	just	implementation	details
– Some	were	there	because	we	weren’t	ready	to	commit	to	them	as	final	API

• The	module	system	hides	non-public	packages,	so	we	took	the	opportunity	
to	clean	up	our	impl_* APIs	in	JavaFX
• All	impl_* methods	are	gone,	but	some	have	become	public	API



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Other	compatibility	issues:
• Node	builder	classes
– Deprecated	in	JDK	8	(and	not	part	of	API	docs)	and	slated	for	removal
– Removed	from	JDK	9	(as	of	build	51)

• JMX	support
–We	used	to	ship	a	standalone	javafx-mx.jar	file	with	the	JDK	(not	JRE)
–Was	unsupported	in	JDK	8
– Removed	from	JDK	9	(as	of	build	111)
– It	is	still	built	as	part	of	OpenJFX in	case	developers	need	it



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Impact	on	JavaFX	Applications:	Summary
• All	applications	need	to	check	and	avoid:
– Using	any	JavaFX	com.sun.*	package	or	impl_	method
• Many	already	have	a	public	replacement

– Using	setAccessible to	access	non-public	types	(even	in	a	javafx.*	package)
– Access	to	any	internal	JavaFX	resources	(e.g.,	modena.css)
– Node	builders

• If	you	want	to	modularize	your	application,	you	also	need	to	avoid:
– Using	ClassLoader.getResource (use	Class.getResource instead)
– Passing	“classpath-relative”	URL	strings	for	resources	in	your	module	into	CSS,	etc.
• Don’t	do	this:	scene.getStyleSheets().add("/path/to/my/resource/resource.css");



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253
Prepare	JavaFX	UI	Controls	&	CSS	APIs	for	Modularization

Oracle	Confidential	– Internal/Restricted/Highly	Restricted 36



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	UI	Controls

JDK	8	ships	with	approximately	64	UI	controls	(or	critical	utility	classes):

Accordion CheckMenuItem DateCell Labeled Pagination ScrollBar SplitPane TextField ToolBar

Alert ChoiceBox DatePicker ListCell PasswordField ScrollPane Tab TextInputControl Tooltip

Button ChoiceDialog Dialog ListView PopupControl Separator TableCell TextInputDialog TreeCell

ButtonBar ColorPicker DialogPane Menu ProgressBar SeparatorMenuItem TableColumn TitledPane TreeItem

Cell ComboBox Hyperlink MenuBar ProgressIndicator Slider TableView Toggle TreeTableCell

CheckBox ContextMenu IndexedCell MenuButton RadioButton Spinner TabPane ToggleButton TreeTableColumn

CheckBoxTreeItem CustomMenuItem Label MenuItem RadioMenuItem SplitMenuButton TextArea ToggleGroup TreeTableView

TreeView



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	UI	Controls
• JavaFX	now	has	a	full	complement	of	expected	UI	controls
– “Wide	but	not	deep”

• We	need	to	iterate:
– fill	gaps	in	functionality,	
– fixing	bugs,
– improving	support	for	third	party	UI	controls



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	UI	Controls
• Some	releases	are	motivated	by	changes	beyond	UI	controls,	but	require	
significant	changes	to	controls:
– JavaFX	2.0:	
• Moving	to	Java
• Introduction	of	‘Region’

– JavaFX	8.0:	
• Migrating	to	Lambdas

– JavaFX	8u40:	
• Introduction	of	accessibility	support

• JDK	9:	Modules



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	UI	Controls

To	understand	JEP	253,	we	need	to	understand:

How	are	UI	Controls	built?
(Note:	I	am	presenting	a	full	session	on	this	at	5:30pm	today)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	UI	Controls
• Most	UI	controls	are	split	into	three	components:

Control

Behavior

Skin



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	UI	Controls
• Most	UI	controls	are	split	into	three	components:

Control

Behavior

Skin

Public	API
(javafx.scene.control)

Private	Implementation
(com.sun.javafx.scene.control.*)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

We	also	need	to	ask	the	same	question	for	CSS	APIs:

What	CSS	APIs	exist,	and	where	are	they	used?



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

Support	for	custom	styleable properties	coming	in	from	CSS,

e.g.	
–fx-custom-property: true;



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property
PseudoClass

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

Support	for	custom	pseudoclass states.

e.g.	
.button:javaone {
..

}



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property
PseudoClass
ParsedValue
StyleOrigin

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

javafx.css



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

*ConverterUsed	to	convert	CSS	values	into	Java	values,
e.g.	BooleanConverter converts
‘true’	or	‘false’	strings	into
Boolean	values.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

*Converter
CssParser

Implementation	and	API	responsible	for	
converting	css syntax	into	a	JavaFX	CSS
data	model.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

*Converter
CssParser
CSS data model:

CalculatedValue
CascadingStyle
Combinator
CssError
Declaration
Rule
*Selector*
Size
Style
StyleCache
StyleClass
StyleMap
Stylesheet

The	actual	data	model	– i.e.	the	output	from
the	CssParser class.	A	large	number	of	
classes…



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	8	and	Earlier	::	State	of	the	Nation	::	CSS

*Converter
CssParser
CSS data model:

CalculatedValue
CascadingStyle
Combinator
CssError
Declaration
Rule
*Selector*
Size
Style
StyleCache
StyleClass
StyleMap
Stylesheet

StyleManager

com.sun.javafx.css

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property
PseudoClass
ParsedValue
StyleOrigin

javafx.css



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Motivation	for	JEP	253
• UI	Controls	and	CSS	APIs	have	always	had	public	API	and	‘private’	API
–Many	projects	can’t	resist	the	urge	to	use	com.sun.*	API.
– Always	frowned	upon,	but	never	prevented	(and	impossible	to	prevent	anyway).

• JDK	9	with	Jigsaw	modularity	is	a	big	game	changer:
– Up	until	JDK	9,	developers	could	use	API	in	com.sun.*	packages.
– JDK	9	enforces	boundaries	- com.sun.*	becomes	unavailable

• Some	JavaFX	apps	and	libraries	will	fail	to	compile	/	execute	under	JDK	9.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Motivation	for	JEP	253

Control

Behavior

Skin

Public	API
(javafx.scene.control)

Private	Implementation
(com.sun.javafx.scene.control.*)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Motivation	for	JEP	253

*Converter
CssParser
CSS data model:

CalculatedValue
CascadingStyle
Combinator
CssError
Declaration
Rule
*Selector*
Size
Style
StyleCache
StyleClass
StyleMap
Stylesheet

StyleManager

com.sun.javafx.css

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property
PseudoClass
ParsedValue
StyleOrigin

javafx.css



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Motivation	for	JEP	253
• Why	do	people	need	to	use	these	APIs?

• Many	applications	need	functionality	we	just	haven’t	got	around	to	making	
public	yet!

• Many	custom	controls	base	their	skins	on	existing	skins,	e.g.
– CustomTextFieldSkin extends	TextFieldSkin
– TextFieldSkin no	longer	available	at	compile	time



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Motivation	for	JEP	253
• JDK	9	modules	has	forced	our	hand:	
–We	need	to	make	public	more	API
–We	can’t	do	everything
–We	need	to	identify	the	most	important	private	API

• Current	approach	is	split	into	two	projects:
– JEP	253:	UI	Controls	and	CSS	APIs
– ‘Smaller’	JavaFX	APIs	(discussed	later)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	9	::	What	are	we	doing
• Useful	JEP	253	URLs:
– http://openjdk.java.net/jeps/253
– JDK-8076423 - Umbrella	project

• JEP	253	is	split	into	two	subprojects:
1. JDK-8077916:	Make	UI	control	skins	into	public	APIs
2. JDK-8077918:	Review	and	make	public	relevant	CSS	APIs



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	9	::	What	are	we	doing	::	Progress	Report
• JDK-8077916:	Make	UI	control	skins	into	public	APIs:
• All	relevant	UI	control	skins	have	been	moved	to	javafx.scene.control.skin

• Each	file	has	been	cleaned	up:
– code	reordered	to	follow	standard	layout	style

– JavaDocs written	for	all	public	API

• Most	importantly:	the	size	of	the	API	per	class	has	been	reduced	to	bare	essentials
–We	can	grow	the	API	in	future	releases	based	on	community	feedback	(but	we	can	never	shrink	it!)

• Overall:	Essentially	this	subproject	is	complete.	Code	is	now	in	public	JDK	9	repos	for	review.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	::	Public	Skins	::	Summary

Control

Behavior

Skin

Private	Implementation
(com.sun.javafx.scene.control.*)

Public	API
(javafx.scene.control)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	::	Public	Skins	::	Summary

Control

Behavior

Skin

Public	API
(javafx.scene.control) Private	Implementation

(com.sun.javafx.scene.control.*)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	9	::	What	are	we	doing	::	Progress	Report
• JDK-8077918:	Review	and	make	public	relevant	CSS	APIs
• Core	CSS	APIs	have	been	made	public,	including
– CSS	data	model
– Converters	(for	converting	from	CSS	text	into	Java)
– Parsers

• Overall:	Essentially	this	subproject	is	complete.	Code	is	now	in	public	JDK	9	repos	for	review.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	::	Summary

*Converter
CssParser
CSS data model:

CalculatedValue
CascadingStyle
Combinator
CssError
Declaration
Rule
*Selector*
Size
Style
StyleCache
StyleClass
StyleMap
Stylesheet

StyleManager

com.sun.javafx.css

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property
PseudoClass
ParsedValue
StyleOrigin

javafx.css



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	::	Summary

CSS data model:
CalculatedValue
CascadingStyle
Combinator
StyleCache
StyleMap

StyleManager

com.sun.javafx.css

CssMetaData
Styleable
StyleableProperty
SimpleStyleable*Property
PseudoClass
ParsedValue
StyleOrigin
CssParser
CSS data model:

CssError
Declaration
Rule
*Selector*
Size
Style
StyleClass
Stylesheet

javafx.css

*Converter

javafx.css.converter



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JDK	9	::	What	are	we	doing	::	Progress	Report
• Overall,	JEP	253	is	’finished’	(barring	internal	testing):
– All	code	has	been	merged	into	JDK	9	main	repo	for	over	a	year

• It’s	critical that	the	community	test	and	give	feedback	on	JDK	9	as	soon	as	
possible!



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	253	::	Summary
• Free	side-effect	of	JEP	253:
–Move	closer	to	providing	a	full	API	for	third-party	UI	controls
– This	has	been	a	feature	we’ve	been	wanting	for	a	very	long	time
–We	now	have	all	controls	and	skins	available	as	public	API

– Next	target	is	to	make	behaviors public	API	too
• Will	discuss	later	in	this	presentation…



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Other	JDK	9	Enhancements

65



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

New	Public	APIs

66



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Understanding	which	private	APIs	are	in	use
• In	June	2015,	we	reached	out	to	the	community	for	help	[1].
• We	needed	to	understand	what	private	APIs	were	most	commonly	being	
used.
• JDeps is	a	tool	that	reports	dependencies	in	code.
• We	wrote	a	small	app	that	would	analyse	output	from	~two	dozen	projects.
– If	you’re	interested,	run	the	following	command:	

jdeps -v <jarfile> > <textfile>
e.g.: jdeps -v SceneBuilder.jar > SceneBuilder.txt

• In	summary:	some	open	source	apps	and	some	customer	apps	break!

[1]	http://mail.openjdk.java.net/pipermail/openjfx-dev/2015-June/017340.html



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview
• Results	quite	clearly	indicated	main	areas	for	further	analysis:
– UI	Control	Skins
– CSS	APIs
– Toolkit	/	Platform	APIs:	
• firing	pulse,	nested	event	loops,	pulse	listening,	platform	startup

– Robot
– Performance	Tracker



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Overview
• Results	also	showed	areas	where	developers	were	doing	the	wrong	thing

• E.g.
Bad	API Proper	API

com.sun.javafx.collections.ObservableListWrapper javafx.collections.FXCollections

com.sun.javafx.css.StyleConverterImpl javafx.css.StyleConverter

com.sun.javafx.css.PseudoClassState javafx.css.PseudoClass



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Firing	Pulse
• Sometimes	an	application	wants	to	be	sure	another	pulse	will	be	run.

• New	API	in	Platform:
– public static void requestNextPulse();

• If	no	pulse	is	running,	this	will	run	a	pulse	at	some	point	in	the	future,	even	if	
no	pulse	is	required.
• If	a	pulse	is	running,	another	one	will	be	scheduled	once	it	completes.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Nested	Event	Loop
• Sometimes	an	application	wants	to	process	events	without	returning	from	
the	current	flow	of	control
• JavaFX	internally	uses	nested	event	loops	in	some	cases:
– Calling	showAndWait on	Stage	or	Dialog
– For	displaying	printer	dialogs

• New	API	in	Platform:
– public static Object enterNestedEventLoop(Object key);
– public static void exitNestedEventLoop(Object key, Object rval);
– public static boolean isNestedLoopRunning();



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Pulse	Listener
• Some	applications	want	a	callback during	the	pulse	for	each	frame
– Using	AnimationTimer provides	a	similar	capability,	but	runs	before	CSS	and	layout	(and	
forces	a	continuous	pulse)

• New	API	in	Scene:
– public final void addPreLayoutPulseListener(Runnable r);
– public final void addPostLayoutPulseListener(Runnable r);

• This	adds	a	listener	(Runnable)	that	is	called	every	frame
– Called	after	CSS	and	either	before	(pre)	or	after	(post)	layout
– Called	before	rendering
• Changes	to	scene	graph	are	rendered	this	frame,	but	CSS	is	not	applied	until	next	frame



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Platform	Startup
• The	JavaFX	runtime	is	initialized	in	one	of	the	following	ways:
– For	standard	applications	that	extend	javafx.application.Application:
• Running	‘java MainClass’	where	MainClass is	a	sub-class	of	Application
• Calling	Application.launch to	launch	the	Application	sub-class

– For	Swing	application	that	use	JFXPanel:
• The	first	time	an	instance	of	JFXPanel is	constructed

– For	SWT	applications	that	use	FXCanvas:
• The	first	time	an	instance	of	FXCanvas is	constructed

• Applications	that	don’t	fit	one	of	these	patterns	often	resort	to	calling	
PlatformImpl.startup which	is	no	longer	accessible



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Platform	Startup
• New	API	on	Platform:
– public static void startup(Runnable);

• Starts	the	JavaFX	runtime	and	then	calls	the	run	method	of	the	Runnable	
on	the	JavaFX	Application	Thread
– The	startup	method	returns	before	the	Runnable	is	run

• Must	not	be	called	if	the	JavaFX	runtime	has	already	been	started
– Cannot	be	used	to	restart	the	JavaFX	runtime	after	it	has	terminated



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Summary
• Results	quite	clearly	indicated	main	areas	for	further	analysis:
– UI	Control	Skins																								(JEP	253)
– CSS	APIs (JEP	253)

– Toolkit	/	Platform	APIs	
• firing	pulse																																							(Added	as	Platform.requestNextPulse())
• nested	event	loops																									(Added	to	Platform)
• pulse	listening																																	(Added	to	Scene)
• Platform	startup (Added	to	Platform)

– Robot																																										(Too	much	work,	primary	use	case	is	testing)

– Performance	Tracker																(Too	much	work)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Turning	impl_*	methods	into	public	API
• All	impl_*	methods	are	gone...but	a	small	number	transitioned	into	full	
public	API:
– FXMLLoader:	LoadListener interface	+	set	/	get	methods
– Image:	getUrl()
– KeyCode:	getChar(),	getCode()
– GridPane:	getRowCount(),	getColumnCount(),	getCellBounds(col,	row)
– Text,TextFlow:	selection,	caret,	hit	test	APIs
–Window:	getWindows()
– FXCanvas:	getFXCanvas()
– TableColumnBase:	reorderable property



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

High	DPI

77



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

High	DPI
• JDK	8u60	has	the	following	support	for	High-DPI:
–Mac:	for	retina	display,	integer	scales	(200%)
–Windows:	for	High-DPI	settings	>=	150%
– No	Linux	support
– No	API	to	allow	application	control	over	High-DPI	scaling
• Rendering	is	always	done	with	an	integer	scale
• On	Windows,	the	blit to	the	screen	might	use	a	non-integer	scale



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

High	DPI
• In	JDK	9	we	added:
– High-DPI	support	for	Linux
– High-DPI	threshold	changed	to	125%	on	Windows
– API	to	get	the	screen	scale
– API	to	force	integer	render	scale	(false	by	default)
– API	to	set/get	the	render	scale
– Support	for	“snap	to	pixel”	even	when	using	non-integer
render	scale



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

JEP	283:	Enable	GTK	3	on	Linux
• FX	window-toolkit	(glass)	uses	GTK	2	in	JDK	8u60
• Ubuntu	16.04:	GTK	2	no	longer	part	of	typical	installation
• SWT	4.x	uses	GTK	3	by	default
– Cannot	load	GTK	2	and	GTK	3	in	same	application
– SWT	is	usually	loaded	before	FX	is	loaded

• FX	glass	and	AWT	toolkit	support	both	GTK	2	(default)	and	GTK	3
– Auto-detect	if	GTK	3	is	already	loaded	and	switch	to	that
– Fail-over	to	GTK	3	if	GTK	2	is	not	present	on	system
– Use	java	–Djdk.gtk.version=3	(or	2)	to	force



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Other	JDK	9	Enhancements
• JEP	257:	Update	to	newer	Version	of	GStreamer
– Requires	newer	version	of	GLIB	so	some	older	Linux	distros
will	no	longer	work

• Updated	version	of	WebKit
– Already	updated	once	for	JDK	9
– Planning	to	update	at	least	one	more	time…maybe	twice
– Goal:	pick	up	bug	fixes	and	performance	improvements	in	a	more	timely	fashion



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Other	JDK	9	Enhancements
• 102	smaller	enhancements,	such	as:
– Tooltip:	Customizable	timing
– ComboBox &	Spinner:	commitValue(),	cancelEdit()
– Spinner:	added	promptText property
–Node:	viewOrder property	(user-specified	rendering	order)
– Font:	loadFonts()
– Collections:	viewIndex	property
– FXPermission:	fine-grained	permissions

• 756	bug	fixes!



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Looking	beyond	JDK	9
What	might	happen	in	JDK	9	update	releases	and	JDK	10

83



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Future	Investigations
• JDK	9	is	nearly	frozen!
– Focus	is	shifting	towards	JDK	9	update	releases	and	JDK	10	feature	planning

• We	are	gathering	feature	ideas	from	the	usual	places	(JBS,	community	
feedback,	internally,	etc.)

• Disclaimer:	We	haven’t	actually	started	planning	yet,	so	what	we’re	
discussing	today	might	change!



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Future	Investigations
• Platform	improvements:
– JavaFX	‘Desktop’	API	(no	AWT)

• Scenegraph improvements:
– Public	focus	traversal	API
– New	layouts	(e.g.	Flexbox)

• Graphics	improvements
– Support	for	multi-resolution	images
– Image	writers
– Updated	graphics	renderers
– Interop	with	platform	graphics?

• Controls	improvements:
–Make	UI	Control	behaviors	public
– UI	Control	Actions	API
– Extended	accessibility	(e.g.	DatePicker)
– TableView improvements	(cell	spanning,	
row/column	freeze,	commit	on	focus	loss)

– Draggable /	detachable	tabs	in	TabPane

• WebView improvements:
–WebGL support
– Accessibility



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

What	do	you	want?
We	have	a	notepad	up	here	on	the	desk.
At	the	end	of	this	session,	take	a	moment	–
let	us	know	what	you	want	to	see	in	future	releases	of	JavaFX

86



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Useful	JavaOne Sessions	&	BOFs

87



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Useful	JavaOne Sessions

Title When Where

JavaFX	Layouts Today	@	4:00pm Hilton—Imperial Ballroom	A

Building	JavaFX UI	Controls Today	@	5:30pm Hilton—Imperial Ballroom	A

Meet	the	Oracle	JavaFX	and	JDK	Client	Team Today	@	7:00pm Hilton—Imperial Ballroom	A

JavaFX Scenic	View Today	@	8:00pm Hilton—Imperial Ballroom	A



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Useful	JavaOne Sessions

Title When Where

Project	Jigsaw: Under	The	Hood Tuesday	@	4:00pm Hilton—Continental	Ballroom 4

Project	Jigsaw	Hack	Session Wednesday	@	8:30am Hilton—Continental Ballroom	4

The	”Unsafe”	Zone	 Wednesday	@	10:00am Hilton—Continental Ballroom	5

Pitfalls	of	Migrating	Projects	to	JDK	9 Thursday	@	1:00pm Hilton—Continental Ballroom	1/2/3



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Q	&	A






