m Microsoft

Java AP| Design Best Practices ©.0

Jonathan Giles

Senior Cloud Developer Advocate

@JonathanGiles

mailto:jonathan.giles@microsoft.com

Hi There!

I'm Jonathan.
| used to work at Sun / Oracle on Java,

but now | work at Microsoft.

My passion is developer experience.

| care about API, documentation, and
anything that limits productivity.

& 2

N> <SS
> ¢ ¢4

API Design Theory Practical Advice

APl Design
Theory

What Is APl Design?

What Is APl Design?

- An APl is what a developer uses to achieve some task
- It APl didn't exist, we'd be programming everything in ‘raw’ Java — no
JDK, no Maven Central, etc — just the Java language

- APl abstracts implementation, allowing us to work at a high level of
abstraction compared with ‘raw’ Java

- Key questions:

- Who is the user of the API?
- What are the goals of the user?

We are all

AP| Designers

AP| Characteristics

- APl has to be

- Understandable
- Well documented
- Consistent

- Fit for purpose
- Restrained

- Evolvable

APl Is a Contract

- APl has to be thought of as a contract

- Adding new API is acceptable
- Removing or modifying existing API should be avoided

The Journey t0 1.0.0

- APl design is cheap

- Spend cycles on it before committing to implementation

Justity Everything

- Every AP| needs justification

- New API designers tend to favor maximal APl designs
- "If add this function, it'll save the user X lines of code”
- My advice: invert this desire!

- Force yourself to justity every public method

- Ask yourself: “Does adding this increase the burden on me, as the API
designer?”

Consistency

- Consistency enables developers to intuit new API

- Important considerations include
- Return types, e.qg. List / Collection / Iterator / Iterable / Stream
- Method naming patterns .
- Argument order
- Consistent instantiation process

Developer Empatny & Gut Feeling

- See the problem domain from your users eyes

- Write sample code with your APl and discuss it with real
users
- Review sample code for

- Unclear intentions
- Duplicate, or redundant code

- Abstraction is too low-level or too high-level

- Ultimately, a good API design comes from
oractice
- Find a mentor who will provide quality feedback

Documentation

- Write quality JavaDoc

- Include small code snippets demonstrating how to use the
class =

- Make use of common ‘annotations’ to help readers (@see,
@since, @link, etc).

Documentation

ALL CLASSES

Packages

com.microsoft.azure.batch
com.microsoft.azure.batch.auth
com.microsoft.azure.batch.interceptor
com.microsoft.azure.batch.protocol
com.microsoft.azure.batch.protocol.models
com.microsoft.azure.cosmosdb
com.microsoft.azure.cosmosdb.rx
com.microsoft.azure.datalake.store
com.microsoft.azure.datalake.store.acl
com.microsoft.azure.datalake.store.oauth2
com.microsoft.azure.datalake.store.retrypolicies
com.microsoft.azure.eventhubs
com.microsoft.azure.eventprocessorhost

AaaaRecord

AaaaRecordSet

AaaaRecordSets

AADObjectType

AbnormalTimePeriod

Access

AccessCondition

AccessCondition

AccessConditionType

AccessControlEntryAction

AccesslnformationUpdateParameters

AccessKeyName

AccessKeyType

AccessLevel

AccessManagement

AccessPolicy

AccessPolicy.Definition

AccessPolicy.DefinitionStages

AccessPolicy.DefinitionStages.Blank

AccessPolicy.DefinitionStages. WithAttach

AccessPolicy.DefinitionStages. Withldentity

AccessPolicy.DefinitionStages. WithPermissions

AccessPolicy.Update

AccessPolicy.UpdateDefinition

AccessPolicy.UpdateDefinitionStages

AccessPolicy.UpdateDefinitionStages.Blank

AccessPolicy.UpdateDefinitionStages. WithAttach

nStages.Withldentity

initionStages. WithPermissions

AccessPolicy.UpdateStages

AccessPolicy.UpdateStages. WithPermissions

AccessPolicyEntry

AccessPolicyUpdateKind

AccessRights

AccessRights

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: FIELD | REQUIRED | OPTIONAL DETAIL: FIELD | ELEMENT

SEARCH: [C_ Search

Package com.microsoft.azure.functions.annotation

Annotation Type HttpTrigger

@Retention (RUNTIME)
@Target (PARAMETER)
public @interface HttpTrigger

The HttpTrigger annotation is applied to Azure functions that will be triggered by a call to the HTTP endpoint that the function is located at. The HttpTrigger annotation
should be applied to a method parameter of one of the following types:

HttpRequestMessage<T>

Any native Java types such as int, String, byte[]
Nullable values using Optional<T>

Any POJO type

For example:

@FunctionName("hello")
public HttpResponseMessage<String> helloFunction(
@HttpTrigger (name "req",
methods = {"get"},
authLevel = AuthorizationLevel.ANONYMOUS) HttpRequestMessage<Optional<String>> request) {

In this code snippet you will observe that we have a function annotated with @FunctionName ("hello"), which indicates that this function will be available at the
endpoint /api/hello. The name of the method itself, in this case helloFunction is irrelevant for all intents and purposes related to Azure Functions. Note however that
the method return type is Ht tpResponseMessage, and that the first argument into the function is an HttpRequestMessage with generic type Optional<String>.
This indicates that the body of the request will potentially contain a String value.

Most important of all however is the @Ht tpTrigger annotation that has been applied to this argument. In this annotation you'll note that it has been given a name, as
well as told what type of requests it supports (in this case, only HTTP GET requests), and that the AuthorizationLevel is anonymous, allowing access to anyone who
can call the endpoint.

The HttpTrigger can be further customised by providing a custom route (), which allows for custom endpoints to be specified, and for these endpoints to be

parameterized with arguments being bound to arguments provided to the function at runtime.

Since:

1.0.0

See Also:

Documentation

- Do not include 'negative’ examples in your code
- e.g. "Here Is some code you should_never write: ..
- Users don't read the text before or after code snippets

- A large proportion of bug reports in your next release will be
about this code node working right.

Documentation

A warning about inserting Nodes into the ComboBox items list

ComboBox allows for the items list to contain elements of any type, including Node instances. Putting nodes into the items list is strongly not recommended. This is because the default cell factory simply inserts Node items directly
into the cell, including in the ComboBox 'button’ area too. Because the scenegraph only allows for Nodes to be in one place at a time, this means that when an item is selected it becomes removed from the ComboBox list, and becomes
visible in the button area. When selection changes the previously selected item returns to the list and the new selection is removed.

The recommended approach, rather than inserting Node instances into the items list, is to put the relevant information into the ComboBox, and then provide a custom cell factory. For example, rather than use the following code

ComboBox<Rectangle> cmb = new ComboBox<Rectangle>();
cmb.getItems().addAll(

new Rectangle(10, 10, Color.RED),

new Rectangle(10, 10, Color.GREEN),

new Rectangle(10, 10, Color.BLUE));

You should do the following

ComboBox<Color> cmb = new ComboBox<Color>();
cmb.getItems().addAll(

Color.RED,

Color.GREEN,

Color.BLUE);

cmb.setCellFactory(new Callback<ListView<Color>, ListCell<Color>>() {
@override public ListCell<Color> call(ListView<Color> p) {
return new ListCell<Color>() {
private final Rectangle rectangle;
{
setContentDisplay(ContentDisplay.GRAPHIC_ONLY);
rectangle = new Rectangle(10, 10);

}

@override protected void updateItem(Color item, boolean empty) {
super.updateItem(item, empty);

if (item == null || empty) {
setGraphic(null);

} else {
rectangle.setFill(item);
setGraphic(rectangle);

Documentation

- JavaDoc Is a great way to review AP|
- Get in the habit of generating the HTML output and

reviewing [[alw]
- Look for things that don't feel right = :q'?l: .
- Look for missing or incorrect JavaDoc QUOOUC
- Look for unintentional API J000n0)
O0RG
V=

Team Consensus

- Create a team-wide cheat sheet
- Share with new hires
- Ensures consistency

- Have a way to enable team members to
give feedback

Our goal: getting everyone moving in
the same direction

Generated APIs

- Today, many APIs are auto-generated
from, e.g. Swagger specs
- This is because a lot of APl wraps web services
- Microsoft uses this for many Azure SDKs
- Tools like the free AutoRest from Microsoft do this

- Regardless of tool, it normally leads to a robotic
API

Generated APIs

- It you need to generate APIs like this:
- Evaluate tooling options — some produce better output than others
- Evaluate very carefully the output — review JavaDoc!

- Convenience layer enables best of both worlds:
- Rapid development and iteration of auto-gen APIs (from changes in spec)
- Ability to add cleaner, more developer-friendly layer on top

- Both layers could be released to Maven Central, developers
can then choose what works best for them

N conclusion:

There is N0 magical process to
API design.

APl design is an art,

and like art,
Decomes easier with practice

Practical
Advice

ective Java 3@ Edition
Read this book!

A lot of the advice in this book is from
my personal experiences, but it is also

discussed in much more depth in this EffECtlve Java

book. Third Edition

JoshuaBloch ... &

D
b

Further reading

Effective Java 3rd Edition is broken up
into 90 items. Whenever | discuss a
concept that is covered in the book, |

will note the item number from the
book.

'Effective Java’ ltem 1

Tip 1: Static Factories

- Static factories offer three benefits over constructors:
1. Ability to be named (i.e. constructors must be the class name)
2. They do not require a new instance to be created
3. Ability to return subclasses

Tip 1: Static Factories

We’ve been using them all along in the JDK:

public static Boolean valueOf(boolean b) {

return b ? Boolean.TRUE : Boolean.FALSE;
¥

and there are always new static factories being added, e.g.:

static <E> List<E> of():
static <E> List<E> of(E el);
static <E> List<E> of(E el, E e2);

//and so on (there are 12 overloaded versions of this method!)

static <E> List<E> of(E... elems);

Tip 1: Static Factories

public class RandomIntGenerator {
private final int min;
private final int max;

public int next() { .. }

public RandomIntGenerator(int min, int max) {
this.min = min;
this.max = max;

}

public RandomIntGenerator(int min) {
this(min, Integer.MAX_VALUE);
+

public RandomIntGenerator(int max) {
this(Integer.MIN_VALUE, max);
+
¥

Duplicate method

https://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/

Tip 1: Static Factories

public class RandomIntGenerator {
private final int min;
private final int max;

private RandomIntGenerator(int min, int max) A{

this.min = min;
this.max = max;

¥

public static RandomIntGenerator between(int min, int max) {
return new RandomIntGenerator(min, max);

¥

public static RandomIntGenerator biggerThan(int min) {
return new RandomIntGenerator(min, Integer.MAX_VALUE);

¥

public static RandomIntGenerator smallerThan(int max) {
return new RandomIntGenerator(Integer.MIN_VALUE, max);

¥

public int next() {...}

https://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/

'Effective Java’ ltem 1

Tip 1: Static Factories

- Contentious...

L] L]
[]
* L) (J00E COI - ()] O S-O)[- - OIAVAiAA[SINAL0]0
\ / @) @ @ /

- As with all advice today — form your own opinions

- Even if you disagree, follow the spirit of the advice:
- Developer empathy
- APl quality
- High design standards

https://dzone.com/articles/constructors-or-static-factory-methods

'Effective Java’' ltem 15

Tip 2: Minimise AP

- Public APl is a contract

- It Is easy to think that we should make developer lives easier by having
as much API as possible
- Two concerns:

- Developer overload — too much API to easily understand how to use it
- The more APl we expose, the greater our maintenance burden

- Start with private modifiers, and increase visibility only after
consideration
- Fields should rarely be public

Tip 2: Minimise AP

- Understand, and properly manage, implementation classes
- Doing this makes it easier to modularize under JDK 9

- TwWO primary approaches

1. Put implementation into packages under an 'impl" package
2. Make impl classes ‘package-private’ (i.e. have no modifier on the class)

- When reviewing JavaDoc, make sure no implementation
leaks out from public API!

'Effective Java’' Item 19

Tip 3: Intentional Inheritance

- Our default position should be to make classes and public
methods final

- This, again, helps to reduce our API surface area

- Introduce protected API caretully
- Before committing to it, write subclasses that use it

Tip 4: Minimise Exposing External Dependencies

- Your APl Is a contract
- If you expose external dependencies, they become part of your contract
- Be careful to only expose the bare minimum

- Consider whether the APl should be exposed, or it you
should expose a wrapper API instead

- Fashions can change faster than your API can!

- Choose which horse to bet on — don't bet on all of them!
- e.g. Offer one async approach (e.g. RxJava), not multiple approaches

‘Effective Java' ltem 54

Tip 5: Don't Return null

- Returning null enables NPE to crop up
- Consistently use conventions to return non-null values instead

Return Type Non-null Return Value

Niglgle " (empty string)

List / Set / Map / Iterator | Use Collections class, e.g. Collections.emptylList() / Collections.emptySet() / etc

Stream Stream.empty()

Array Return an empty, zero-length array

All other types Consider using Optional (but refer to next tip)

'Effective Java' ltem 55

Tip 6: Understand When To Use Optional

- Java 8 introduced Optional as a way of lessening NPE
- An Optional<T> contains one element of type T, or is empty

- Optional is best used in select cases when:
- A result might not be able to be returned
- The APl consumer has to perform some different action in this case

- Optional provides a number of convenience methods

Tip 6: Understand When To Use Optional

// getFastest returns Optional<Car>, but if the cars list is empty, it
// returns Optional.empty(). In this case, we can choose to map this to an
// invalid value.

Car fastestCar = getFastest(cars).orElse(Car.INVALID);

// If the orElse case 1s expensive to calculate, we can also use a Supplier
// to only generate the alternate value if the Optional is empty
Car fastestCar = getFastest(cars).orElseGet(() —> searchThewWeb());

// We could alternatively throw an exception
Car fastestCar = getFastest(cars).orElseThrow(MissingCarsException::new);

// We can also provide a lambda expression to operate on the value, if it

// 1is not empty
getFastest(cars).ifPresent(this::raceCar)

Tip 6: Understand When To Use Optional

// Whilst it is ok to call get() directly on an Optional, you risk a
// NoSuchElementException if it is empty. You can wrap it with an

// 1isPresent() call as shown below, but if your API is commonly used like

// this, it suggests that Optional might not be the right return type
Optional<Car> result = getFastest(cars);
if (result.isPresent()) {

result.get().startCarRace();

¥

Tip 6: Understand When To Use Optional

// Some people just want to see the world burn

public Optional<Car> getFastest(List<Car> cars) {

if (cars == null || cars.isEmpty()) {
return null;

}

'Effective Java' ltem 55

Tip 6: Understand When To Use Optional

- As discussed in the previous tip, don't use Optional in all
Cases

- Do not do Optional<Collection<T>>, simply return an empty
Collection<T> when there are no elements.

'Effective Java' ltem 61

Tip 7: Beware of Boxing

- Boxing / Unboxing is when Java converts primitives to /
from reference types

- e.g. int <-> Integer

T

nere are three concerns when using reference types:

- Increased possibility of null pointer exceptions (no possibility with

orimitives)

- Correctness (e.g. == operator works differently for int and Integer)
- Performance considerations

'Effective Java' ltem 61

Tip /: Beware of Boxing

- Correctness:
- Reference types are objects, so == compares object identity.
- This may not be what is intended!

Tip /. Beware of Boxing

// Two int primitive types, both with same value
int value2Primitive = 2;
int value2PrimitiveAgain = 2;

// Testing equality using == operator, returns true — as expected
System.out.println(value2Primitive == value2PrimitiveAgain);

// Two Integer reference types, both representing the same value of 2

Integer value2 = new Integer(2);
Integer value2Again = new Integer(2);

// What do we get here?
System.out.println(value2.equals(value2Again));
// true — as expected
System.out.println(value2 == value2Again);
// false — might be surprising!

'Effective Java' ltem 61

Tip /: Beware of Boxing

- Performance:
- Unless there is a reason to use the reference type, use primitives by default
- Boxing / Unboxing can sap performance in some AP

Tip /. Beware of Boxing

// Simple code snippet, note the use of Long to accumulate the sum value
long t = System.currentTimeMillis();

Long sum = 0OL;
for (long i = 0; i < Integer.MAX_VALUE;

sum += 1;

¥

System.out.println("total: " + sum);
System.out.println("processing time:

// total: 2305843005992468481
// processing time: 6756 ms

i++) {

+ (System.currentTimeMillis() - t) +

msll);

https://dzone.com/articles/java-performance-notes-autoboxing-unboxing

Tip /. Beware of Boxing

// Same code snippet, with a primitive long to accumulate the sum value
long t = System.currentTimeMillis();

long sum = 0OL;

for (long i = 0; i < Integer.MAX_VALUE; i++) A

sum += 1;
¥
System.out.println("total: " + sum);
System.out.println("processing time: " + (System.currentTimeMillis() - t) + " ms");

// total: 2305843005992468481
// processing time: 1248 ms

// In summary: the reference type approach is more than 5x slower, for no benefit!

https://dzone.com/articles/java-performance-notes-autoboxing-unboxing

'Effective Java' ltem 61

Tip /: Beware of Boxing

* [N summary:
- When you see a return type or method parameter using reference types,

e.g. Integer, consider it a code smell
- In most circumstances this may not be too bad — coders will probably

deal with it fine

- But, it is a location where there is a non-zero chance of issues, all of which would
be negated if primitive types were used in their place

- If the code is to be used in tight, performance-critical loops, the cost of autoboxing
can be extreme

[t is not appropriate to use autoboxing and uNboxing
for scientific computing, or other performance-
sensitive numerical code. An Integer is not a
supstitute for an int; autoboxing and unboxing blur
the distinction between primitive types and reference
types, but they do not eliminate it.

https://docs.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html

'Effective Java' ltem 44

Tip 8: Become Familiar With java.util. function

- |t's very enticing to write your own @Functionallnterface’s

- Before doing this — spend time becoming familiar with the

interfaces in java.util.function
- In here you'll find 43 standard functional interfaces
- Can be broken down into six categories

'Effective Java' ltem 44

Tip 8: Become Familiar With java.util. function

Interface

Signature

Summary

UnaryOperator<T>

T apply(T t)

UnaryOperator<T> extends Function<T,T>

BinaryOperator<T>

T apply(T t1, T t2)

BinaryOperator<T> extends BiFunction<T,T,T>

Predicate<T> boolean test(T t) Takes a T, returns a primitive boolean value
Function<T,R> R apply(T t) Takes a T, returns an object of type R
Supplier<T> T get() Takes no argument, returns an object of type T
Consumer<T> void accept(T t) Takes a T, returns nothing

Tip 8: Become Familiar With java.util.function

Interface Signature Example

List<String> names = Arrays asList("bob", "josh", '"megan");
UnaryOperator<T> T apply(T 1) names. replaceAll(Strlng :toUpperCase);

BinaryOperator<T> T apply(Tt1, Tt2) Mapsstring, fnteger> sataries = new Hashitap<>();

salaries.replaceAll((name, oldValue) —>
name.equals("Freddy") ? oldValue : oldValue + 10000);

i List<String> namesWithA = names.stream()
Predicate<T> boolean test(T 1) .filter(name —> name.startsWith("A"))
.collect(Collectors.toList());
; Map<String, Integer> nameMap = new HashMap<>();
>
Function<T,R R aF)pIy(T'O Integer value = nameMap.computeIfAbsent("Giles", String::length);
Supplier<T> T get() int[] fibs = {0, 1};

Stream<Integer> fibonacci = Stream.generate(() — {

int result = fibs[1];

int fib3 = fibs[@] + fibs[1];
fibs[0] = fibs[1];

fibs[1] = fib3;

return result;

});

<T> i List<String> names = Arrays.asList("John", "Fredd "Samuel");
Consumer<T void accept(T 1) names. forEach(name —> System.out.println("Hello, X + name));

| a8 functional-inferfaces

http://www.baeldung.com/java-8-functional-interfaces

'Effective Java' ltem 44

Tip 8: Become Familiar With java.util. function

- In some cases, the existing interfaces do not meet our
needs

- Their name is not descriptive
- You want to add default methods to the interface

- Use the @Functionallnterface annotation
- This informs devs and the compiler the interface is designed for lambdas
- The interface will only compile if it has one abstract method

Joshua Bloch

Effective Java
ReSOU r[Ces Thnrd Fdition

You Tube

a 3\

= > Youlube' H OO A
DEVOX France 7éme édition - 18 au 20 avril 2018, Paris
@ Effective Java, 39 Ed. is now available!
=

One new chapter

Fourteen new items

Two retired items

All existing Items thoroughly revised

— 1 EeVOXYFR
> Ml o) 12074557 @ &

Effective Java, Third Edition Keepin' it Effective (J. Bloch) - el | roctive Java - Still Effect
721 views After All These Years
gle

Snyk Test Vulnerability DB Docs Blog Features Partners Pricing Sign up

Snyk helps you use open source and stay secure.
Continuously find & fix vulnerabilities in your dependencies

9 S ST W N

Snyk for Developers Snyk for DevOps Snyk for Enterprise Security

Find vulnerabilities in your repos and remediate risks Block vulnerable libraries in Cl/CD, monitor Regain visibility into open source risk and empower
with updates and patches. PaaS/Serverless apps for dependency flaws. your developers to address it.

Learn more Learn more Learn more

) Quick start with GitHub Sign up to get started

S EE

Gartner

Snyk named a May 2018 Cool Vendor by Gartner in -
Find out more

Application and Data Security

120,000+ 1,000,000+ 100,000+

developers using Snyk packages monitored projects protected

83% of organisations use vulnerable dependencies [kalu—" D B (L

Dashboard Projects ~ Settings

“It’s time to start scanning all of your open source components for ©
known vulnerabilities. Doing so will eliminate the majority of your

application security risk.”

http://snyk.io/

ReVAP| —

Revapi Online Check News Getting Started Downloads Basic Info ~

Revapi

Full-featured API checker for Java and beyond.

Revapi is an AP| analysis and change tracking tool written in Java.

Its focus is mainly on Java language itself but it has been specifically designed to not be limited to just Java. APl is much
more than just java classes - also various configuration files, schemas, etc. can contribute to it and users can become
reliant on them.

Revapi is in beta. The Java API checker is fairly capable and can track both binary and source compatibility
1 and the maven plugin and ant task are fairly useful but there are still many things to be done and polished.
Your help is greatly appreciated.

Because surprisingly there doesn’t seem to exist a simple yet extensible, developer-oriented tool that could be used to
check the APIs and, more importantly, track their evolution. APIs are not static, they evolve to accomodate new features
and past mistakes but at the same time, each change in the APIs potentially breaks the code of the users of the APIs.

Itis therefore important for the tool to do 2 things right
1. correctly identify all changes in an API, be it Java code, configuration files, descriptor files of any sort, etc.

2.allow the developer to mark selected changes as intentional (unavoidable changes in APl are sometimes
necessary).

Prior Art

SigTest is a tool from Oracle itself to track API coverage and API evolution. It is functionally very close to what revapi aims
to be but has a couple of drawbacks that make revapi worthwhile to look at:

while there is a maven plugin for SigTest, it is not available in Maven Central

the maven plugin cannot check api changes (yet)

it cannot track intentional APl changes

it relies on generated "signature" files instead of directly comparing jars
Clirr

Clirr is another tool, that is functionally quite close to what revapi aims to be. It has a nice maven plugin (developed

Table of Contents

Why?

Prior Art ~

Animal Sniffer
japicmp

Getting Involved

Sub Projects ~

http://revapi.org/

-
O
4

),
<C
O
O
W,

Azure for Java Developers -

o Q Portal

Why Azure v Solutions Products v Documentation ~ Pricing Training ~ Marketplace Partners v Support~ Blog More v Free account >

Azure / Azure for Java developers

Fter by e Azure for Java develope
Get started developing Java apps for the cloud with these tutorials, tools, and libraries.

v Java Quickstarts
> Service Fabric 5 Get Started

1 Code Samples
Web Apps Deploy your first web app to Azure {

J Azure code samples using Java
SQL Database
MysQL

IntelliJ, Maven, Eclipse, and VS Code plugins = Azure Libraries for Java
PostgreSQL [l

IDE plugins & Tools (\;) API Reference

Cosmos DB
Blob storage
> Azure libraries for Java Get Started guideS

v Tools
VS Code Learn how to use Java with Azure services.
Intelli)
Eclipse Deploy your first web app to Azure C Deploy a Spring Boot app with Maven < > Create a Java serverless function

> Maven Plugins

Spring

> Java Tutorials

Deploy to Kubernetes ¥ Microservices with Service Fabric @ CI/CD to App Service with Jenkins®

> How-To Articles

> Java Code Samples

~ API Reference Sa m p IeS

> Active Direct
ctive Directory o Create a web app with Spring Boot and MySQL

e Azure Blob Storage with Java

e Connect to Azure Cosmos DB with the MongoDB API
> Applnsights e Java microservices with Service Fabric

> Batch

> APl Management
> App Service

http://java.ms/

ree Azure ller -

L Q Myaccount Portal

Why Azure v Solutions Products v Documentation ~ Pricing Training ~ Marketplace Partners v Support~ Blog More v

Create your Azure free account today

Get started building your next great idea with Azure

Or buy now >

T T Y)

Dashboard v + hesstess £ stimses Oshee s Bme 80w

Cognitive Services

What do | get?

With your Azure free account, you get all of this—and you won't be charged until you choose to upgrade.

$200 credit + 12 months + Always free

http://java.ms/free

VS Code-

Visual Studio Code Docs Updates Blog Community Extensions FAQ P Search Docs {4 Download

Version 1.23 is now available! Read about tl

@ EXTENSIONS . package,jsc m
’ inport app from '. ;
O e e I | n g o Lot inport debugModule = require(’debug’);
p . A A import http = require('http');
. P
[2B C# for Visual Studio Cod:
Red efl N ed ® L) SEATrETHED ¢ debug = debugodule("node
.
Python * ok ok ok k
Free. Open source. Runs everywhere e Linting, Debugging (multi-thr. port = normalizePort(process.env.PORT || '3000');
() nstall ¢, portf];
Debugger for Chrome +0 CssImportRule
\q Debug your Javascript code .. *3 CssSupportsRule
Download for Mac install serl=: ex
v server. i g exports
Stable Build C/CH+ *ok ke kk Server.on . n
Complete C/C++ language su. server.on o oo
Install -
+0 Message
Other platforms and Insiders Edition Go Kk ke k normalizel
Rich Go language support for... 5
instal
sing VS Code, you agree to its . normalizePort(val: any): number|string|boolean {
cense and privacy statemen ES S kkkkk port = parseInt(val, 10);
{u m} Integrates ESLint into VS Code.
Uninstall (isNaN(port)) {
PowerShell Tk ke
! Develop PowerShell scripts in... return val;
©master S 11131 @0AO n9,Col21 Spaces2 UTF8 LF Typescript @

<y ® =

IntelliSense Debugging Built-in Git Extensions

Darren Fuller @dazfuller / Valery Melou @ValeryMelou Lukas @Mckbrothe;
Dcode is already my goto editor Best editor I've ever used. Super 1 What's going on with

of choice, now | think it might hyper lightweight for what it's . The latest update is awesome!

just be taking another step able to do. | love it. Think it will now become my

towards taking over my life #HappyCoding via primary tool for webdevelopment
instead of WebStorm :)

http://java.ms/vscode

= Microsoft

Thanks!

Jonathan Giles

Senior Cloud Developer Advocate

lonathan.ailes@microsoft.com
@JonathanGiles

mailto:jonathan.giles@microsoft.com

More T1ps

Warning!

These are ‘overflow’ slides. They exist
because they represent important
concepts that | might cover if time
permits, but they are not as fully polished
as the main deck. Proceed with caution!

'Effective Java' Item 2

Tip: Builders > Constructor Telescoping

- Constructor arguments are important
- Used to specify subset of parameters required to form a correct instance
- Sometimes there are varying options — constructors can telescope’
- Argument overload — hard to write and hard to read

- Builders are a better option in cases where there are many
constructors or constructor arguments

Tip: Builders > Constructor Telescoping

public class Pizza {
public Pizza(int size) { .. }
public Pizza(int size, boolean cheese) { .. }
public Pizza(int size, boolean cheese, boolean pepperoni) { .. }
public Pizza(int size, boolean cheese, boolean pepperoni, boolean bacon) { .. }

http://java.ms/api-builder-pattern

Tip: Builders > Constructor Telescoping

An alternative approach 1s to use the JavaBean pattern with setters:

public class Pizza {

public Pizza(int size) { }

public void setCheese(boolean val) { .. }
public void setPepperoni(boolean val) { .. }
public void setBacon(boolean val) { .. }

http://java.ms/api-builder-pattern

Tip: Builders > Constructor Telescoping

we could also use static factory methods from tip 1, but difficult to
determine a useful API, given the possible pizza permutations

public class Pizza {

private Pizza() { }
public static Pizza createSmallCheesePepperoniPizza() { .. }

public static Pizza createMediumCheeseBaconPepperoniPizza() { .. }

// Impossible to support all permutations'!

¥

http://java.ms/api-builder-pattern

Tip: Builders > Constructor Telescoping

public class Pizza {
private final int size;
private final boolean cheese;
private final boolean pepperoni;
private final boolean bacon;

// Builder class here — on next slide

private Pizza(Builder builder) {
size = builder.size;
cheese = builder.cheese;
pepperoni = builder.pepperoni;
bacon = builder.bacon;
¥
}

http://java.ms/api-builder-pattern

Tip: Builders > Constructor Telescoping

public static class Builder {
//required
private final int size;

public Builder addPepperoni() {

//optional pepperoni = true;
private boolean cheese; return this;
private boolean pepperoni; ¥

private boolean bacon;
public Builder addBacon() {

public Builder(int size) { bacon = true;
this.size = size; return this;

} }

public Builder addCheese() { public Pizza build() {
cheese = true; return new Pizza(this);
return this; }

} }

http://java.ms/api-builder-pattern

Tip: Builders > Constructor Telescoping

VirtualMachine 1inuxVM = azure.virtualMachines().define("myLinuxVM")
.withRegion(Region.US_EAST)

.withNewResourceGroup (rgName)
.withNewPrimaryNetwork("10.0.0.0/28")
.withPrimaryPrivateIPAddressDynamic()
.withNewPrimaryPublicIPAddress("mylinuxvmdns")

.withPopularLinuxImage (UBUNTU_SERVER_16_04 LTS)
.withRootUsername("tirekicker")

.withSsh(sshKey)
.withSize(VirtualMachineSizeTypes.STANDARD D3 _V2)

.create():

'Effective Java' ltem 43 / 44

Tip: Support Lambdas

- When designing API, consider if it can support lambdas

- Requirement for lambdas:

- The argument type must be a ‘functional interface’ (or abstract class)
- A single abstract method

Tip: Support Lambdas

2va Swing Ul Taolit

JButton btn = new JButton(“Click Me”):
btn.addMouseListener(new MouseListener() {

@Override public void mouseReleased(MouseEvent e) { .. }
@Override public void mousePressed(MouseEvent e) { .. }
@Override public void mouseExited(MouseEvent e) { .. }
@Override public void mouseEntered(MouseEvent e) { .. }
{ ..

@Override public void mouseClicked(MouseEvent e) I

P

Tip: Support Lambdas

2va Swing Ul Taolit

JButton btn = new JButton(“Click Me”);
btn.addMouselListener(new MouseAdapter() {

@Override public void mouseClicked(MouseEvent e) { .. }

F);

Tip: Support Lambdas

Javab X Ul Toolkit:

Rectangle rect = new Rectangle();
rect.setOnMouseClicked(new EventHandler<MouseEvent>() {

@Override public void handle(MouseEvent e) {
print(e);
I3
1);

Rectangle rect = new Rectangle();
rect.setOnMouseClicked(e —> print(e));

'Effective Java' ltem 47

Tip: Don't Use Stream as a Return Type

- APIs need to return collections, and there are many options
- Collection, Set, List, Iterable, arrays, and now Streams!

- Bad options:

- Returning a Stream is problematic:
- Difficult to do a normal for loop (without additional code)
- Returning Iterable makes stream processing difficult
- Need to wrap the Iterable with additional code to create a Stream

'Effective Java' ltem 47

Tip: Don't Use Stream as a Return Type

- Best options:

- Collection (and subtypes) support external (for-each) and internal
(streams) Iteration.

- Arrays are valid too, as Arrays.asList() and Stream.of() methods enable
quick conversion

'Effective Java' Item 20

Tip: Interfaces > Abstract Classes

- [t Is much easier to retrofit a class to implement a new
interface, rather than extend a new abstract class

- From Java 8, interfaces now support default methods
- Many of the benefits of abstract classes

'Effective Java' ltem 17

Tip: Maximise Immutability

- Immutable classes are simple
- Once instantiated they do not change
- Thread-safe, testable, and easily reasoned about

- Mutable classes increase code complexity

- Strive to make fields final” whenever possible

‘Effective Java' ltem 26

Tip: Avoid Raw Types

- Generics are great — we should always use them
- A raw type is when a generic class is used without generic typing, e.g. List
- We do this to ensure type safety and expressiveness

- Raw types exist so that generics, when introduced in Java 5, were
backwards compatible

- It your IDE Is warning you about a raw type, add generic
type information!

'Effective Java' ltem 4

Tip: Prevent Utility Class Instantiation

- Utility classes are pervasive in public AP
- Often a collection of static methods
- The intent of utility classes is to simply call these methods

- [t no constructor is defined in a class, a default, public
constructor is provided
- There is no use in having a constructor on a pure utility class!
- Utility classes should have a private constructor to prevent instantiation

Tip: Prevent Utility Class Instantiation

public class Utils {
private Utils() {
// prevent instantiation of class

}

public static void sum(int v1, int v2) { .. }

Tip: Favour Enums Over Boolean Arguments

- Be wary of API with boolean parameters
- Re-reading code with boolean parameters can be difficult

- |t the boolean parameter is used in multiple methods,
consider introducing an enum

'Effective Java' Item 29, 30

Tip: Use Generics

- Generics have been around since Java 5
- We should all be writing generic classes by now
- Generics help code quality — it's harder to do something dumb...

- Sometimes generics can create a ot of noise, e.q.

Tip: Use Generics

Sometimes generics can create a lot of noise, e.g.

public Single<RestResponse<MyGetHeaders, Flowable<ByteBuffer>>> getWithRestResponseAsync()

In some cases an intermediate class aids readability:

public final class MyGetResponse extends RestResponse<MyGetHeaders, Flowable<ByteBuffer>> {
MyGetResponse(int statusCode,
MyGetHeaders headers,
Map<String, String> rawHeaders,
Flowable<ByteBuffer> body) {
super(...);
I3
s

AS we canh now write this:

public Single<MyGetResponse> getWithRestResponseAsync()

'Effective Java' Item 27

Tip: Avoid Unchecked Warnings

- Generics give the compiler useful information
- This enables more checks to be run at compile time
- Generics lead to more ‘unchecked’ warnings
- Do not ignore the increased verbosity — read and consider what it means

- Eliminating unchecked warnings improves type satety

- When you can't eliminate a warning, but can prove type safety manually,
use the @SuppressWarnings(“unchecked”) annotation

Tip: Avoid Unchecked Warnings

// A method that takes a raw List and casts it to a List<String>

void foo(List inputList) A{
List<String> list = (List<String>) inputList; // unsafe cast

}

Tip: Avoid Unchecked Warnings

// A method that takes a raw List and casts it to a List<String>

@SuppressWarnings("unchecked")
void foo(List inputList) {

List<String> list = (List<String>) inputList; // unsafe cast

¥

Tip: Avoid Unchecked Warnings

// A method that takes a raw List and casts it to a List<String>

void foo(List inputList) {
// We can suppress this because it is only ever called by foo(List<String>)

@SuppressWarnings("unchecked")
List<String> list = (List<String>) inputList; // unsafe cast

}

‘Effective Java’ Item 29, 30

Tip: Use Generics

- While everyone (hopetully!) knows and uses class generics,
less people use generic methods.

- We've already encountered them, e.g the new static List.of() method

- Generic methods are methods that introduce their own
type parameters.

- Similar to declaring a generic class, but the type parameter's scope is
imited to the method where it is declared.

- Static and non-static generic methods are allowed

Tip: Use Generics

Static generic method example:

public class Util {
public static <K, V> boolean compare(Pair<K, V> pl, Pair<K, V> p2) {
return pl.getKey().equals(p2.getKey()) & pl.getValue().equals(p2.getValue());
I3
¥

'Effective Java' Item 2

Tip: Builders > JavaBean Setters

- Constructors ensure a valid initial state

- Simplitying constructors by removing arguments and

replacing with setters is a bad idea
- Calling setters is not enforced

- Developers may ignore required properties and leave class instance in an
invalid state

