m Microsoft

b <
Java API Design Best Practices OvQ
OEVELOPER
AOVOCATE
Jonathan Giles
Java Guy at Microsoft -

@JonathanGiles

mailto:jonathan.giles@microsoft.com

Hl There! 'ovJ

I'm Jonathan.

OEVELOPER
| used to work at Sun / Oracle on Java, ADVOCATE
but now | work at Microsoft. ./

My passion is developer experience.
| care about API, documentation, and
anything that limits productivity.

API Design Theory Practical Advice

Fffective Java 3@ Edition
Read this book!

A lot of the advice in this book is from
my personal experiences, but it is also

discussed in much more depth in this
book.

Further reading

Effective Java 3 Edition is broken up
into 90 items. Whenever | discuss a
concept that is covered in the book, |
will note the item number from the
book.

Joshua Bloch "

Effective Java

Third Edition

A
vV

APl Design
Theory

What Is APl Design?

What Is APl Design?

- An APl is what a developer uses to achieve some task

- |t abstracts implementation, allowing us to work at a higher level of
abstraction

- Key questions:
- Who is the user of the API?
- What are the goals of the user?

We are all
APl Designers

API Characteristics

- APl has to be

- Understandable

- Well documented
- Consistent

- Fit for purpose

- Restrained

- Evolvable

APl Characteristics - Understandable

- How do developers discover and make use of a new API?

- An API should not be considered successtul if a developer cannot
intuitively understand how to use it.

- External documentation (hon-JavaDoc) should not be required ideally.
- Object-orientation has made API discovery more difficult.

- Developers should consider the ‘entry points’ into their API.

API Characteristics - Consistency

- A good APl should not surprise its users
- Consistency enables developers to intuit new AP

AP| Characteristics - Consistency

- A minimal set of return types should be used

- What to return for a collection? e.qg. List / Collection / Iterator / Iterable /
Stream

- |If some methods are documented to not return null for a
certain type, never return null for that type in any methoa

'Effective Java' ltem 54

AP| Characteristics - Consistency

- Returning null enables NPE to crop up
- Consistently use conventions to return non-null values instead

Return Type Non-null Return Value

String " (empty string)

List / Set / Map / Iterator | Use Collections class, e.g. Collections.emptyList() / Collections.emptySet() / etc

Stream Stream.empty()

Array Return an empty, zero-length array

All other types Consider using Optional (discussed later in presentation)

AP| Characteristics - Consistency

- Method naming patterns should be planned up-front

- Establish a vocabulary to use repeatedly throughout the API for types,
methods, arguments, constants, etc.

- Method names like Type.of(), Type.valueOf(), Type.toXYZ(), Type.from(),
etc. should be used consistently, and never mixed.

AP| Characteristics - Consistency

- Argument order should be consistent
- I a method is overloaded, keep the order consistent whenever possible

- If the argument size becomes unwieldy, consider
Introducing argument objects

- A class containing the values that would ordinarily go into the method
argument.

- This allows for better growth of the API over time, as the argument type
can have more fields added with ease.

AP| Characteristics — Fit For Purpose

- In developing an APl we must ensure that we target it at
the right level for the intended user. This can be thought of
N two ways:

1. Do only one thing, and do it right.
2. Understand your user and their goals.

API| Characteristics - Restrained

S anger
. Follow v
@scottbolinger

At this point in my career | understand that a
feature that only takes a few hours to build
can create hundreds of hours of support and
maintenance in the future. Just because it’s

easy to build does not mean you should add
it to your product.

5:51 AM - 23 Aug 2018

893 Retweets 2153likes P S LG S DO @

QO 26 11 893 Q) 2.2k M (v

'Effective Java' Item 15

AP| Characteristics - Restrained

- [t is easy to think that we should make developer lives
easier by having as much APl as possible

- TWO concerns:

- Developer overload — too much API to easily understand how to use it
- The more APl we expose, the greater our maintenance burden

AP| Characteristics - Restrained

- Every APl needs justification

- New API designers tend to favor maximal APl designs
- “If I add this function, it'll save the user X lines of code”

- My advice: invert this desire!

- Force yourself to justify every public method

- Ask yourself: “Does adding this increase the burden on me, as the API
designer?”

- This does not mean there should be no convenience AP!!

AP| Characteristics - Restrained

- Convenience APl is important to a good API

- e.qg. List.of(..) or List.add(Object)

- These convenience methods enable developers to save substantial
amounts of code

- There is an important gut feeling to develop here:
- What is the right amount of convenience?

'Effective Java' Item 19

AP| Characteristics - Restrained

- Qur default position should be to make classes and public
methods final

- Start with private modifiers, and increase visibility only after
consideration

- Fields should rarely be public

- Introduce protected API caretully
- Before committing to it, write subclasses that use it

AP| Characteristics - Restrained

- Understand, and properly manage, implementation classes

- TwO primary approaches

1. Put implementation into packages under an 'impl’ package
2. Make impl classes ‘package-private’ (i.e. have no modifier on the class)

- When reviewing JavaDoc, make sure no implementation
leaks out from public API!

AP| Characteristics - Restrained

- Your APl Is a contract

- |f you expose external dependencies, they become part of your contract
- Be careful to only expose the bare minimum

- Consider whether the API should be exposed, or if you
should expose a wrapper APl instead

APl Characteristics - Evolvable

- Our API contract should state our policy on
backwards compatibility and deprecation

- Semantic Versioning:

- Example:

- Adding new API is acceptable, but removing or moditying
existing APl can only happen in a major release, after one
release being deprecated

https://semver.org/

APl Characteristics - Evolvable

- The ‘journey to 1.0.0'
- APl design is cheap

- Spend cycles on it before committing to implementation
- 'Eat your own dog food'

- Projects have different breaking changes policies

- Don't feel overly locked-down — it depends on how important backwards
compatibility is for your community

Fating Your Own Dog Food

- Have developer empathy
- See the problem domain from your users eyes

- Write sample code with your APl and discuss it
with real users

- Review sample code for
- Unclear intentions
- Duplicate, or redundant code
- Abstraction is too low-level or too high-level

API| Characteristics - Documentation (.

“@T‘

- Write quality JavaDoc —E

- Make use of common ‘annotations’ to help readers (@see, D
@since, @link, etc). AT

- Include small code snippets demonstrating how to use the
class

- These can be added as a result of user bug reports — to clarify how an
APl is used.

API| Characteristics - Documentation

7

ALL CLASSES

com.microsoft.azure.batch
com.microsoft.azure.batch.auth
com.microsoft.azure.batch.interceptor
com.microsoft.azure.batch.protocol

| com.microsoft.azure.batch.protocol.models

com.microsoft.azure.cosmosdb
com.microsoft.azure.cosmosdb.rx
com.microsoft.azure.datalake.store
com.microsoft.azure.datalake.store.acl
com.microsoft.azure.datalake.store.oauth2
com.microsoft.azure.datalake.store.retrypolicies
com.microsoft.azure.eventhubs
com.microsoft.azure.eventprocessorhost

AaaaRecord

AaaaRecordSet

AaaaRecordSets

AADODbjectType

AbnormalTimePeriod

Access

AccessCondition

AccessCondition

AccessConditionType
AccessControlEntryAction
AccessInformationUpdateParameters
AccessKeyName

AccessKeyType

AccesslLevel

AccessManagement

AccessPolicy

AccessPolicy.Definition
AccessPolicy.DefinitionStages
AccessPolicy.DefinitionStages. Blank
AccessPolicy.DefinitionStages.WithAttach
AccessPolicy.DefinitionStages. Withldentity
AccessPolicy.DefinitionStages. WithPermissions
AccessPolicy.Update
AccessPolicy.UpdateDefinition
AccessPolicy.UpdateDefit
AccessPolicy.UpdateDefinitionStages.Blank

AccessPolicy.UpdateDefinitionStages. WithPermissions
AccessPolicy.UpdateStages

AccessPolicy.Update Stages. WithPermissions
AccessPolicyEntry

AccessPolicyUpdateKind

AccessRights

AccessRights

OVERVIEW PACKAGE [¢l.t::)| USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS
SUMMARY: FIELD | REQUIRED | OPTIONAL

FRAMES NO FRAMES
DETAIL: FIELD | ELEMENT

SEARCH: |O_ search

Package com.microsoft.azure.functions.annotation

Annotation Type HttpTrigger

@Retention (RUNTIME)
@Target (PARAMETER)
public @interface HttpTrigger

The HttpTrigger annotation is applied to Azure functions that will be triggered by a call to the HTTP endpoint that the function is located at. The HttpTrigger annotation
should be applied to a method parameter of one of the following types:

HttpRequestMessage<T>

Any native Java types such as int, String, byte[]
Nullable values using Optional<T>

Any POJO type

For example:

@FunctionName("hello")
public HttpResponseMessage<String> helloFunction(
@HttpTrigger (name = "req",
methods = {"get"},
authLevel = AuthorizationLevel.ANONYMOUS) HttpRequestMessage<Optional<String>> request) {

}

In this code snippet you will observe that we have a function annotated with @ FunctionName ("hello"), which indicates that this function will be available at the
endpoint /api/hello. The name of the method itself, in this case helloFunction is irrelevant for all intents and purposes related to Azure Functions. Note however that
the method return type is Ht tpResponseMessage, and that the first argument into the function is an Ht t pRequestMessage with generic type Optional<sString>.
This indicates that the body of the request will potentially contain a String value.

Most important of all however is the @Ht tpTrigger annotation that has been applied to this argument. In this annotation you'll note that it has been given a name, as
well as told what type of requests it supports (in this case, only HTTP GET requests), and that the AuthorizationLevel is anonymous, allowing access to anyone who
can call the endpoint.

The HttpTrigger can be further customised by providing a custom route (), which allows for custom endpoints to be specified, and for these endpoints to be
parameterized with arguments being bound to arguments provided to the function at runtime.

Since:

1.0.0

See Also:

API| Characteristics - Documentation (.

- Use JavaDoc to specify behavioral contracts

- For example:

- Arrays.sort() method guarantees it is stable (equal elements
are not reordered).

- [t isnt right to specity this guarantee in the API

- The JavaDoc details therefore form part of the APl contract

- Behavioral contracts should be treated as AP|

- Adding, changing, or removing them should be carefully
considered

API| Characteristics - Documentation

- JavaDoc Is a great way to review AP]

- Get in the habit of generating the HTML output and
reviewing
- Look for things that don't feel right
- Look for missing or incorrect JavaDoc
- Look for unintentional API

2

{ =S|

1] | .

API| Characteristics - Documentation

- Do not include 'negative’ examples in your code
- e.g. "Here is some code you should never write: .."
- Users don't read the text before or after code snippets

- A large proportion of bug reports in your next release will be
about this code node working right.

API| Characteristics - Documentation

A warning about inserting Nodes into the ComboBox items list

ComboBox allows for the items list to contain elements of any type, including Node instances. Putting nodes into the items list is strongly not recommended. This is because the default cell factory simply inserts Node items directly
into the cell, including in the ComboBox 'button’ area too. Because the scenegraph only allows for Nodes to be in one place at a time, this means that when an item is selected it becomes removed from the ComboBox list, and becomes
visible in the button area. When selection changes the previously selected item returns to the list and the new selection is removed.

The recommended approach, rather than inserting Node instances into the items list, is to put the relevant information into the ComboBox, and then provide a custom cell factory. For example, rather than use the following

ComboBox<Rectangle> cmb = new ComboBox<Rectangle>();
cmb.getItems().addAll(

new Rectangle(10, 10, Color.RED),

new Rectangle(10, 10, Color.GREEN),

new Rectangle(10, 10, Color.BLUE));

You should do the following:

ComboBox<Color> cmb = new ComboBox<Color>();
cmb.getItems().addAll(

Color.RED,

Color.GREEN,

Color.BLUE);

cmb.setCellFactory(new Callback<ListView<Color>, ListCell<Color>>() {
@override public ListCell<Color> call(ListView<Color> p) {
return new ListCell<Color>() {
private final Rectangle rectangle;
{
setContentDisplay(ContentDisplay.GRAPHIC_ONLY);
rectangle = new Rectangle(10, 10);

}

@override protected void updateItem(Color item, boolean empty) {
super.updateltem(item, empty);

if (item == null || empty) {
setGraphic(null);

} else {
rectangle.setFill(item);
setGraphic(rectangle);

Team Consensus

- Create a team-wide cheat sheet
- Share with new hires
- Ensures consistency

- Have a way to enable team members to
give feedback

Our goal: getting everyone moving in
the same directior

INn conclusion:

There is no magical process to
API design.

APl design is an art,
and like art,
pDecomes easier with practice

O
O O
B .9
33
.

N <

'Effective Java' Item 1

Tip 1. Static Factories

- Static factories offer three benefits over constructors:

1. Ability to be named (i.e. constructors must be the class name)
2. They do not require a new instance to be created

3. Ability to return subclasses

Tip 1: Static Factories

We’'ve been using them all along in the JDK:

public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;
¥

and there are always new static factories being added, e.qg.:

static <E> List<E> of();

static <E> List<E> of(E el);

static <E> List<E> of(E el, E e2);

// «....and so on (there are 12 overloaded versions of this method!)

static <E> List<E> of(E... elems);

Tip 1: Static Factories

public class RandomIntGenerator {
private final int min;
private final int max;

public int next() { .. }

public RandomIntGenerator(int min, int max) {
this.min = min;
this.max = max;

}

public RandomIntGenerator(int min) {
this(min, Integer.MAX_VALUE);
¥

public RandomIntGenerator(int max) A{
this(Integer.MIN_VALUE, max);
¥
¥

Duplicate method

https://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/

https://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/

Tip 1: Static Factories

public class RandomIntGenerator {
private final int min;
private final int max;

private RandomIntGenerator(int min, int max) {
this.min = min;
this.max = max;

}

public static RandomIntGenerator between(int min, int max) {
return new RandomIntGenerator(min, max);

}

public static RandomIntGenerator biggerThan(int min) {
return new RandomIntGenerator(min, Integer.MAX_VALUE);

}

public static RandomIntGenerator smallerThan(int max) {
return new RandomIntGenerator(Integer.MIN_VALUE, max);

}

public int next() {...}

https://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/

https://jlordiales.me/2012/12/26/static-factory-methods-vs-traditional-constructors/

'Effective Java' Item 1

Tip 1. Static Factories

- Contentious...
- https://dzone.com/articles/constructors-or-static-factory-methods

- As with all advice today — form your own opinions

- Even if you disagree, follow the spirit of the advice:
- Developer empathy
- API quality
- High design standards

https://dzone.com/articles/constructors-or-static-factory-methods

'Effective Java' Item 55

Tip 2: Understand When To Use Optional

- Java 8 introduced Optional as a way of lessening NPE
- An Optional<T> contains one element of type T, or is empty

- Optional is best used in select cases when:

- A result might not be able to be returned
- The APl consumer has to perform some different action in this case

- Optional provides a number of convenience methods

Tip 2: Understand When To Use Optional

// getFastest returns Optional<Car>, but if the cars list is empty, it

// returns Optional.empty(). In this case, we can choose to map this to an
// 1invalid value.

Car fastestCar = getFastest(cars).orElse(Car.INVALID);

// If the orElse case is expensive to calculate, we can also use a Supplier
// to only generate the alternate value if the Optional 1s empty
Car fastestCar = getFastest(cars).orElseGet(() —> searchTheWeb());

// We could alternatively throw an exception
Car fastestCar = getFastest(cars).orElseThrow(MissingCarsException::new);

// We can also provide a lambda expression to operate on the value, if it
// 1is not empty
getFastest(cars).ifPresent(this::raceCar)

Tip 2: Understand When To Use Optional

// Whilst it is ok to call get() directly on an Optional, you risk a
// NoSuchElementException if it 1s empty. You can wrap it with an
// isPresent() call as shown below, but if your API is commonly used like
// this, 1t suggests that Optional might not be the right return type
Optional<Car> result = getFastest(cars);
if (result.isPresent()) A

result.get().startCarRace();

}

Tip 2: Understand When To Use Optional

// Some people just want to see the world burn

public Optional<Car> getFastest(List<Car> cars) {

if (cars == null || cars.isEmpty()) {
return null;

}

'Effective Java' Item 55

Tip 2: Understand When To Use Optional

- As discussed in the previous tip, don't use Optional in all
cases

- Do not do Optional<Collection<T>>, simply return an empty
Collection<T> when there are no elements.

'Effective Java' ltem 44

Tip 3: Become Familiar With java.util.function

- [t's very enticing to write your own @Functionallnterface’s

- Before doing this — spend time becoming familiar with the
interfaces in java.util.function

- In here you'll find 43 standard functional interfaces
- Can be broken down into six categories

'Effective Java' ltem 44

Tip 3: Become Familiar With java.util.function

Interface

Signature

Summary

UnaryOperator<T>

T apply(T t)

UnaryOperator<T> extends Function<T,T>

BinaryOperator<T>

T apply(T t1, T t2)

BinaryOperator<T> extends BiFunction<T,T,T>

Predicate<T> boolean test(T t) Takes a T, returns a primitive boolean value
Function<T,R> R apply(T t) Takes a T, returns an object of type R
Supplier<T> T get() Takes no argument, returns an object of type T
Consumer<T> void accept(T t) Takes a T, returns nothing

'Effective Java' ltem 44

Tip 3: Become Familiar With java.util.function

- In some cases, the existing interfaces do not meet our
needs
- Their name is not descriptive
- You want to add default methods to the interface

- Use the @Functionallnterface annotation
- This informs devs and the compiler the interface is designed for lambdas
- The interface will only compile if it has one abstract method

'Effective Java' ltem 43 / 44

Tip 4: Support Lambdas

- When designing API, consider if it can support lambdas

- Requirement for lambdas:

- The argument type must be a ‘functional interface’ (or abstract class)
- A single abstract method

Tip 4: Support Lambdas

Java Swing Ul Toolkit:

JButton btn

new JButton(“Click Me”):

btn.addMouselListener(new MouselListener() {

@Override
@Override
@Override
@Override
@Override

F);

public
public
public
public
public

void
void
void
void
void

mouseReleased(MouseEvent e)
mousePressed(MouseEvent e)

{..

{..

mouseExited(MouseEvent e) { ..

mouseEntered(MouseEvent e)
mouseClicked(MouseEvent e)

{..
{..

}

}

¥
¥

}

Tip 4: Support Lambdas

Java Swing Ul Toolkit:

JButton btn = new JButton(“Click Me”);
btn.addMouselListener(new MouseAdapter() {
@Override public void mouseClicked(MouseEvent e) { .. }

});

Tip 4: Support Lambdas

JavaFX Ul Toolkit:

Rectangle rect = new Rectangle();
rect.setOnMouseClicked(new EventHandler<MouseEvent>() {
@Override public void handle(MouseEvent e) {
print(e);

}
});

Rectangle rect = new Rectangle();
rect.setOnMouseClicked(e —> print(e));

Cogyrighled Material

Joshua Bloch ...
]a\;; 9

Effective Java
Resources T

YouTube

e = N

= > Youluhe" H OO A

DEVOX France 7eme édition - 18 au 20 avril 2018, Paris

@ Effective Java, 39 Ed. is now available!

One new chapter

Fourteen new items

Two retired items

All existing Items thoroughly revised

—HTIEVOXXFR
» o) 12072557
Up next

Effective Java, Third Edition Keepin' it Effective (J. Bloch) s | ctive Java - Still Effect

721 views After All These Years

Snyk —

Snyk Test Vulnerability DB Docs Blog Features Partners Pricing Signup

Snyk helps you use open source and stay secure.
Contlnuously find & fix vulnerabilities in your dependencies

&, E o A § & @ ner

Snyk for Developers Snyk for DevOps Snyk for Enterprise Security

Find vulnerabilities in your repos and remediate risks Block vulnerable libraries in CI/CD, monitor Regain visibility into open source risk and empower
with updates and patches. PaaS/Serverless apps for dependency flaws. your developers to address it.

Learn more Learn more Learn more

) Quick start with GitHub Sign up to get started

Oy & Qs

Snyk named a May 2018 Cool Vendor by Gartner in -
Find out more

Application and Data Security

120,000+ 1,000,000+ 100,000+

developers using Snyk packages monitored projects protected

83% of organisations use vulnerable dependencies iy Gzt Vuloerabty 08 _ Docs] My accounc «

Dashboard Projects Settings

“It’s time to start scanning all of your open source components for
known vulnerabilities. Doing so will eliminate the majority of your
application security risk.”

Gewb 7 | Darcy 2 | O biebuckee 2 Languages

http://snyk.io/

REVAP| —

Revapi OnlineCheck ~ News Getting Started Downloads Basic Info ~

Revapi

Full-featured API checker for Java and beyond.

Revapi is an APl analysis and change tracking tool written in Java.

: . B B - Table of Contents
Its focus is mainly on Java language itself but it has been specifically designed to not be limited to just Java. APl is much

more than just java classes - also various configuration files, schemas, etc. can contribute to it and users can become Why?
reliant on them.
Prior Art v
Revapi is in beta. The Java API checker is fairly capable and can track both binary and source compatibility
1 and the maven plugin and ant task are fairly useful but there are still many things to be done and polished.
Your help is greatly appreciated.

Why?

Because surprisingly there doesn’t seem to exist a simple yet extensible, developer-oriented tool that could be used to
check the APIs and, more importantly, track their evolution. APIs are not static, they evolve to accomodate new features
and past mistakes but at the same time, each change in the APIs potentially breaks the code of the users of the APIs.

Itis therefore important for the tool to do 2 things right:
1. correctly identify all changes in an API, be it Java code, configuration files, descriptor files of any sort, etc.

2. allow the developer to mark selected changes as intentional (unavoidable changes in APl are sometimes
necessary).

Prior Art
SigTest

SigTest is a tool from Oracle itself to track API coverage and API evolution. It is functionally very close to what revapi aims
to be but has a couple of drawbacks that make revapi worthwhile to look at:

* while there is a maven plugin for SigTest, it is not available in Maven Central

* the maven plugin cannot check api changes (yet)

* itcannot track intentional APl changes

e itrelies on generated "signature" files instead of directly comparing jars
Clir

Clirr is another tool, that is functionally quite close to what revapi aims to be. It has a nice maven plugin (developed

Sub Projects v

http://revapi.org/

)
N/
=
—1
=
g—

O,

U
D,

Azure for Java Developers -

7

Why Azure ~+ Solutions Products v Documentation Pricing Training Marketplace Partners -

Azure / Azure for Java developers

Filter by title

v Azure for Java developers

v Java Quickstarts
> Service Fabric
Web Apps
SQL Database
MysQL
PostgreSQL
Cosmos DB
Blob storage
> Azure libraries for Java
v Tools
VS Code
Intelli)
Eclipse
> Maven Plugins
Spring
> Java Tutorials
> How-To Articles

> Java Code Samples

v API Reference
> Active Directory
> APl Management
> App Service
> Applnsights
> Batch

Azure for Java developers

Support v Blog

Get started developing Java apps for the cloud with these tutorials, tools, and libraries.

7 Get Started
Deploy your first web app to Azure

IntelliJ, Maven, Eclipse, and VS Code plugins
IDE plugins & Tools

Get started guides

Learn how to use Java with Azure services.

Deploy your first web app to Azure

Deploy to Kubernetes

N,

Samples

e Create a web app with Spring Boot and MySQL

e Azure Blob Storage with Java

o Connect to Azure Cosmos DB with the MongoDB API
o Java microservices with Service Fabric

4

[} Code Samples

o Q Portal

Free account >

Azure code samples usin

= Azure Libraries for Java

<\@) API Reference

Deploy a Spring Boot app with Maven

Microservices with Service Fabric

< > Create a Java serverless function

@ CI/CD to App Service with Jenkins®

http://java.ms/

Free Azure ller

i L Q My account Portal

Why Azure v Solutions Products v Documentation ~ Pricing ~ Training Marketplace Partners v Support v Blog More v

Create your Azure free account today

Get started building your next great idea with Azure

Or buy now >

P) © @ e @

Dashboard v +Nedsbons / tiesbons O e it e 8 o

--- \d

What do | get?

With your Azure free account, you get all of this—and you won't be charged until you choose to upgrade

$200 credit 12 months + Always free

http://java.ms/free

l‘J Visual Studio Code Docs Updates Blog Community Extensions FAQ AP search Docs 4 Download

Version 1.23 is now available! Read about the new features and fixes from April.

EXTENSI

Code editing. -

Redefined g
o L2
Free. Open source. Runs everywhere) e
- A
Download for Mac o E C’
Stable Build

'ms and Insiders Edition

©a

—_—
=
z
&

>

© master S 14

<y

IntelliSense Debugging

Darren Fuller
a e is already my goto editor

of choice, now | think it might
just be taking another step
towards taking over my life

ode-expres:
ONs 5p. wwwts x
rt app from './app

import debugModule = requ

- e, import http = require(ht

ire('debug');
tp');

C# for Visual Studio Code (po... _ ,
e debug = debugModule('nod ess—)i
Python ok ke kK
Linting, Debugging (multi-thr... port = normalizePort(process.env.PORT || '3000');
Install app. setf(’
Debugger for Chrome
Debug your JavaScript code .. +0 CssSupportsRule
Install ser = ex
server.li g exports
c/CcH+ ok ke kK server.on ». 4
Complete C/C++ language su. Server.on o i e riots
Install ¢
+0 Message!
[ok K kK

normalizel
Rich Go language support for.
Install

normalizePort(va

Estint jobollolel port = parselnt(val,
Integrates ESLint into VS Code
Uninstall if (isNaN(port)) {
PowerShell ok K kK
Develop PowerShell scripts in. return val;
131 @040

®

Built-in Git

Valery Melou @ValeryMelou

Best editor I've ever used. Super
hyper lightweight for what it's
able to do. | love it.

1: any): number|string|
, 10);

Ln9,Col21 Spaces:2 UTF-8 LF TypeScript @

[=

Extensions

What's going on with @c

The latest update is awesome!
Think it will now become my
primary tool for webdevelopment
instead of WebStorm :)

http://java.ms/vscode

Presentation Materials - http://jogil.es/api-design

a

~

Home Media Projects Presentations Contact

Java API Design Best Practices

=& Microsoft

Java API Design Best Practices

Jonathan Giles

Senior Cloud Developer Advocate

onathan.giles@microsoft.c
@JonathanGiles

http://jogil.es/api-design

= Microsoft

Thanks!

Jonathan Giles
Java Guy at Microsoft

jonathan.qgiles@microsoft.com

@JonathanGiles

mailto:jonathan.giles@microsoft.com

